Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nachwuchsgruppen der TU Dresden erforschen Kommunikationsinfrastrukturen im Miniaturformat und entwickeln neue Ansätze für das rechnergestützte Materialdesign

27.08.2015

ESF-Förderung für Schlüsseltechnologien: Nachwuchsgruppen der TU Dresden erforschen Kommunikationsinfrastrukturen im Miniaturformat und entwickeln neue Ansätze für das rechnergestützte Materialdesign.

Zwei Nachwuchsforschergruppen der TU Dresden werden ab 1. September 2015 über den Europäischen Sozialfonds (ESF) gefördert. Das hat das Sächsische Staatsministerium für Wissenschaft und Kunst (SMWK) bekanntgegeben. Über drei Jahre erhalten sie insgesamt rund 5,2 Mio. Euro.

CoSiMa – Computer-Simulationen für das Materialdesign
Fördersumme: ca. 2,2 Mio. Euro

Die Nachwuchsforschergruppe wird vom Dresden Center for Computational Materials Science (DCMS) unter der Leitung von Prof. Gianaurelio Cuniberti koordiniert und widmet sich aktuellen praxisnahen Fragestellungen der rechnergestützten Materialforschung. Geschätzte 70 Prozent aller in deutschen Unternehmen entwickelten Produkte beruhen auf Innovationen im Materialbereich.

Oft vergehen jedoch mehr als 20 Jahre, bis neu entdeckte Materialien reif für die praktische Anwendung sind. Die rechnergestützte Materialforschung ermöglicht es, diese Zeitspanne durch Simulationen erheblich zu verkürzen und neue Ansätze deutlich schneller zur Marktreife zu bringen.

Die ESF-Nachwuchsforschergruppe CoSiMa zielt vor allem auf die Gewinnung von anwendungsnahen Ergebnissen in der multi- und interdisziplinären rechnergestützten Materialforschung für Anwendungen in Elektronik, Medizin, Biologie und Lebenswissenschaften, Energietechnik, Verfahrenstechnik und Automobilbau. Zudem wird sie die Position Dresdens als führendes Zentrum der Materialforschung weiter stärken.

Atto3D – Kommunikationsinfrastrukturen für Attonetze in 3-D-Chipstapeln
Fördersumme: ca. 3 Mio. Euro

Attonetze in 3-D-Chipstapeln sind ein neues Forschungsfeld, mit dem sich die Nachwuchsgruppe unter der Leitung von Prof. Gerhard Fettweis vom Vodafone Chair Mobile Communications Systems beschäftigt. Hintergrund ist die fortwährende Miniaturisierung der Elektronik, die in absehbarer Zeit an physikalische Grenzen führen wird. Bereits heute werden Chips mit Strukturgrößen von weniger als 14 nm produziert.

Bei weiterer Skalierung sind die Abstände der Siliziumatome im Kristallgitter nur noch wenige Atomlagen dünn. Ein möglicher Ausweg ist die 3-D-Integration, d.h. das Stapeln von Chips übereinander zu „Hochhäusern“ der Elektronik im Miniaturformat. Um das gesamte Potenzial dieser Technologie nutzen zu können, ist es notwendig, dass Informationen innerhalb des gesamten Chipstapels ausgetauscht werden können.

Dafür erforschen und entwerfen die Wissenschaftler eine völlig neue Kommunikationsinfrastruktur mit all ihren Komponenten in kleinsten Abmessungen, die zudem hochgradig energieeffizient und ressourcenschonend ist, die sogenannten 3-D-Attonetze. 3-D-Integration und Attonetze sind Schlüsseltechnologien für viele zukünftige Produkte, innovative Technologien und Megatrends wie Smart Cities, Smart Grids oder Industrie 4.0.

Informationen für Journalisten:
Kim-Astrid Magister
Tel.: 0351 463-32398
pressestelle@tu-dresden.de

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-dresden.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Wie ein infizierter Knochen besser heilt
16.10.2019 | Klinikum der Ruhr-Universität Bochum - Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH

nachricht Sensorschleuse Argus von dormakaba mit ICONIC Award 2019 ausgezeichnet
15.10.2019 | dormakaba Deutschland GmbH

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics