Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Millionenförderung für die FAU-Laserforschung

07.01.2014
Über eine prestigeträchtige Auszeichnung und Fördergelder in Höhe von zwei Millionen Euro kann sich Prof. Dr. Peter Hommelhoff, Leiter des Lehrstuhls für Experimentalphysik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), freuen:

Der Physiker gehört zu der kleinen Gruppe von herausragenden Forschern, die vom Europäischen Forschungsrat (European Research Council – ERC) einen „Consolidator Grant“ erhalten. Der ERC vergibt diese Grants ausschließlich für als bahnbrechend und exzellent bewertete Forschungsvorhaben.

Peter Hommelhoff und sein Team untersuchen in ihren Forschungsprojekten die Wechselwirkung von Laserlicht und Materie: Dazu fokussieren die Physiker extrem kurze Laserpulse, die nur aus wenigen optischen Schwingungen bestehen und wenige Femtosekunden – also Millionstel einer Milliardstel Sekunde lang sind – auf das Ende sehr scharfer Metall-Nadelspitzen. Dadurch werden Elektronen aus der Spitze emittiert. Diese Elektronen vermessen die Forscher: Sie beobachten, wie viele Elektronen mit welcher Energie abgegeben werden, und können daraus sehr viel über die Wechselwirkung von den kurzen Laserpulsen mit der Spitze erfahren. „Wir sehen uns dabei ein Extrem an: Wir erzeugen nämlich die kürzesten Elektronenpulse, die man mit Laserlicht von diesen Spitzen hervorbringen kann“, erläutert Peter Hommelhoff. Selbst die schnellste Kamera der Welt ist viel zu langsam, um die Elektronen aufnehmen zu können. Deshalb messen die Wissenschaftler ihre Energie und erhalten so Energie-Spektren, die sie mit theoretischen Modellen vergleichen können, um die ablaufenden Prozesse zu verstehen.

Im Projekt, das der Europäische Forschungsrat nun fördert, wollen die Wissenschaftler unter anderem die Rückwirkung der Elektronen auf das Licht untersuchen. Die scharfe Spitze kann nämlich auch als Sensor dienen, mit dessen Hilfe Peter Hommelhoff und sein Team optische Felder mit bisher unerreichter Auflösung vermessen wollen. Außerdem streben sie an, mit den Laserpulsen Strom innerhalb neuartiger Materialien extrem schnell – in weniger als einer Femtosekunde – ein- und auszuschalten. Die Grundlagenforschung von Hommelhoffs Arbeitsgruppe könnte in neuartigen, lichtgesteuerten und extrem schnellen Transistoren münden, die die bereits heute in Glasfasern verwendeten Laserpulse und Elektronik koppeln würden.

Peter Hommelhoff leitet seit 2012 den Lehrstuhl für Experimentalphysik an der FAU und arbeitet auch mit dem Erlanger Max-Planck-Institut für die Physik des Lichts zusammen. Zuvor war er unter anderem am Max-Planck-Institut für Quantenoptik in Garching, der Stanford Universität und der Ludwig-Maximilians-Universität München tätig. Seine Hauptinteressen in Forschung und Lehre gelten der Wechselwirkung von Licht und Materie, insbesondere der auf schnellsten Zeit- und kleinsten räumlichen Skalen, neuartigen Quantensystemen und der Teilchenbeschleunigung mit Hilfe von Laserstrahlung.

Informationen für die Medien:
Prof. Dr. Peter Hommelhoff
Tel.: 09131/85-27090
peter.hommelhoff@physik.uni-erlangen.de

Blandina Mangelkramer | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht EU-Millionenförderung für Deep-Learning-Projekt in Leipzig
15.08.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb
14.08.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Alles zur Kryotechnik: HDT bietet Seminar zum „Kryostatbau“ in Karlsruhe an

15.08.2018 | Seminare Workshops

Brandschutz im Tanklager – Tagung in Essen

15.08.2018 | Seminare Workshops

Orientieren auf die Schnelle: Neue Erkenntnisse zur Wahrnehmungssteuerung im Gehirn

15.08.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics