Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Mess-Minimalist: Bonner Mathematiker erhält ERC Starting Grant

20.10.2010
Professor Dr. Holger Rauhut kann sich freuen: Das „European Research Council“ (ERC) hat ihm Fördergelder für ein anspruchsvolles Forschungsvorhaben zugesagt.

Rund eine Millionen Euro fließen in den nächsten fünf Jahren an den Mathematiker der Universität Bonn. Mit den Mitteln dieses „ERC Starting Grants“ möchte er unter anderem nach neuen Möglichkeiten suchen, aus minimal wenigen Messwerten komplexe Daten zu rekonstruieren. Davon könnten beispielsweise medizinische Tomographieverfahren oder Radarsysteme profitieren.

Digitalkameras mit 10, 12, 16 Megapixeln? Völlig überholt! An der Rice-University im texanischen Houston haben Physiker vor vier Jahren eine Kamera konstruiert, die mit einem einzigen Pixel auskommt. Das Spannende daran: Sie schießt damit erstaunlich scharfe Bilder (Beispiele gibt es unter http://dsp.rice.edu/cscamera). Die US-Forscher arbeiten auf einem Forschungsgebiet, das unter Mathematikern momentan en Vogue ist wie kaum ein zweites: dem „Compressive Sensing“. Der Begriff bezeichnet die Kunst, aus möglichst wenigen Messpunkten ein möglichst exaktes Bild der Realität zu rekonstruieren.

Professor Dr. Holger Rauhut hat Algorithmen entwickelt, die das ziemlich gut können. Er sitzt in seinem Eckbüro im vierten Stock des Bonner Hausdorff-Zentrums für Mathematik und holt mit ein paar Mausklicks ein Beispiel auf den Bildschirm: Ein kompliziertes Tonfrequenzspektrum, das er aus nur 25 Messwerten exakt rekonstruieren konnte. „Normalerweise misst man erst und komprimiert die gewonnenen Daten danach“, sagt er. „Wir versuchen dagegen, direkt ‚komprimiert’ zu messen.“

Weniger messen anstatt viel wegwerfen

Kameras beispielsweise speichern ihre Fotos meist als jpg-Dateien. Dabei werfen sie 90 Prozent der aufgezeichneten Informationen einfach weg. Die Unterschiede zum Original sind dennoch kaum wahrnehmbar: Jedes Foto hat Bereiche, die fast keine Informationen enthalten - farbige Flächen wie den blauen Himmel zum Beispiel. Man könnte stattdessen auch einfach nur zehn Prozent der Daten aufzeichnen. Genau so funktioniert die Kamera der Rice-Universität: Sie macht nicht ein Einzelfoto, das sich aus zehn Millionen Punkten zusammensetzt. Stattdessen nimmt sie hintereinander einige tausend Ein-Pixel-Fotos auf. Daraus rekonstruiert sie dann das Originalbild.

Und zwar nicht etwa, indem sie zwischen den Einzelaufnahmen interpoliert. Das Ganze funktioniert nach einem komplett anderen Prinzip: Das Bild wird über tausende von Mikrospiegeln auf eine lichtempfindliche Fotodiode gebündelt. Dabei schaltet die Software jedoch einen Teil der Spiegel blind. Wie viele und welche, wechselt von Aufnahme zu Aufnahme nach dem Zufallsprinzip. Damit variiert auch die Lichtmenge, die der Pixelsensor empfängt. Aus dieser Variation und der Information, welche der Mikrospiegel zum jeweiligen Aufnahmezeitpunkt blind waren, lässt sich das Originalbild rekonstruieren. Das klappt umso besser, je mehr Messungen der Algorithmus auswerten kann.

Die Ein-Pixel-Kamera ist der Beweis, dass Compressive Sensing bei der Aufnahme von Bildern überhaupt funktioniert. Für herkömmliche Digitalknipsen ist sie dagegen keine Konkurrenz: Sie benötigt für ein einziges Foto aus mehreren tausend Einzelaufnahmen einige Minuten. Das reicht, um eine Eiche bei Windstille zu fotografieren. Doch schon vor dem Sonntagsausflug einer Schnecke muss das Gerät kapitulieren. „Compressive Sensing lohnt sich vor allem, wenn der Messprozess sonst sehr lange dauern würde oder mit hohen Kosten verbunden wäre“, erklärt Professor Rauhut. So soll beispielsweise eine Tomographie nicht zu lange dauern, da der Aufenthalt in der engen „Röhre“ viele Patienten belastet. Auch wenn für die Erfassung und Komprimierung der Daten vor Ort wenig Rechenleistung zur Verfügung steht, ist es besser, wenn nur wenige Messwerte anfallen.

High Risk, high gain

„Ich werde mit den ERC-Geldern keine Kamera bauen“, betont Rauhut. „Mich interessiert vor allem die Mathematik, die dem ‚Compressive Sensing’ zugrunde liegt. Ein Kernpunkt dabei ist der mathematische Beweis, unter welchen Bedingungen und wie effizient diese Verfahren funktionieren.“ Der 36-Jährige möchte die bestehenden Algorithmen weiter entwickeln, so dass sie sich beispielsweise auch auf Radarsysteme anwenden lassen. Außerdem will er das Prinzip auf völlig andere Bereiche ausdehnen. Ein Beispiel sind mathematische Funktionen mit sehr vielen Variablen. „Ich möchte versuchen, darunter die wenigen wirklich wichtigen Parameter zu identifizieren, ohne viel über die Funktion als solche wissen zu müssen“, sagt er. Derartige komplexe Funktionen treten beispielsweise in der Wettervorhersage oder bei ökonomischen Simulationen auf.

Mathematisch sind das sehr anspruchsvolle Themen - nicht umsonst fördert das ERC vor allem so genannte „High Risk, high gain“-Projekte. Rauhut wird diese Aufgabe allerdings nicht alleine schultern: Er will mit der Fördermillion aus Brüssel für die kommenden fünf Jahre einen Postdoktoranden und zwei Doktoranden finanzieren.

Kontakt:
Prof. Dr. Holger Rauhut
Hausdorff-Zentrum für Mathematik und Institut für Numerische Simulation
Telefon: 0228/73-62245
E-Mail: rauhut@hcm.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Weltweit einzigartige Femtosekundenlaseranlage eingeweiht
21.06.2018 | Hochschule RheinMain

nachricht Stahl-Innovationspreis 2018: Mikro-Dampfturbine ausgezeichnet
21.06.2018 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics