Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kann Gentherapie die chronische Abstoßung von Spenderherzen verhindern?

09.09.2013
Wissenschaftler des Herzzentrums am Universitätsklinikum Heidelberg suchen nach neuen Wegen, krankhafte Veränderungen am transplantierten Herzen zu blockieren. Die Dietmar Hopp Siftung fördert das innovative Projekt mit 380.000 Euro.

Wissenschaftler am Universitätsklinikum Heidelberg entwickeln neue Methoden, um der chronischen Abstoßung bei Spenderherzen auf molekularer Ebene gegenzusteuern: Mit Hilfe der Gentherapie, bei der künstlich erzeugte Stückchen Erbinformation in die Zellen der Blutgefäßwände des Herzens eingebracht werden und diese gezielt umprogrammieren, wollen sie – zunächst im Tierversuch - schädliche Umbauprozesse in den Herzgefäßen verhindern. Die Dietmar Hopp Stiftung fördert das Forschungsprojekt in den kommenden drei Jahren mit rund 380.000 Euro.

Die Hälfte aller transplantierten Herzen entwickelt in den ersten fünf Jahren eine Erkrankung der Herzkranzgefäße, die sogenannte Transplantatvaskulopathie (TVP). Ursache sind Abstoßungsreaktionen mit anhaltenden Entzündungen in den Herzgefäßen, die auch durch die medikamentöse Unterdrückung des Immunsystems nicht vollständig beherrscht werden können. Die angegriffenen Gefäße verengen und verschließen sich mit der Zeit vollständig; der Herzmuskel wird nicht mehr ausreichend mit Blut versorgt. Bei einem Drittel der betroffenen Patienten führt die chronische Abstoßungsreaktion innerhalb von fünf Jahren zum Herzversagen.

Bisher keine Therapie, um schleichende Abstoßung zu stoppen

„Bisher stehen keine Therapien zur Verfügung, um die chronische Abstoßung zu stoppen; Gefäßstützen oder Bypässe eignen sich nur in Einzelfällen“, sagt Professor Dr. Klaus Kallenbach, Arbeitsgruppenleiter an der Universitätsklinik für Herzchirurgie Heidelberg (Ärztlicher Direktor: Professor Dr. Matthias Karck). Wegen des Mangels an Spenderorganen haben die Patienten auch nur sehr geringe Chancen, ein neues Herz zu erhalten. „Wir brauchen daher dringend neue Therapieansätze“, so der Herzchirurg.

Ein solcher Ansatz könnte die sogenannte Gentherapie sein, an der am Universitätsklinikum Heidelberg vor allem zur Behandlung der Herzschwäche in den letzten Jahren intensiv geforscht wird. Dazu stellen die Wissenschaftler kurze Abschnitte genetischer Information (DNS) künstlich her und schleusen diese in die zu behandelnden Zellen. Die Abschnitte können z.B. Bauanleitungen für Proteine enthalten, die in der Zelle defekt oder nicht ausreichend hergestellt werden, oder die Bildung schädlicher Proteine blockieren. Die DNS-Stückchen werden entweder von den Zellen direkt aus dem Blut aufgenommen oder von veränderten Viren, die keine Erkrankung mehr auslösen können, in die Zellen übertragen.

DNS-Stückchen sollen Gleichgewicht bestimmter Proteine wieder herstellen

Beim Umbauprozess der Koronargefäße am Spenderherz ist eine bestimmte Gruppe von Proteinen, die sogenannten Matrix-Metalloproteinasen (MMP), maßgeblich beteiligt. Ihre Gegenspieler sind die TIMPs (Tissue Inhibitors of Matrix-Metalloproteinases): Sie hemmen die Aktivität der MMPs. Im gesunden Gefäß besteht ein Gleichgewicht zwischen MMPs und TIMPs, bei der chronischen Abstoßung gewinnen die MMPs die Oberhand. „Unser Ziel ist es, dieses Gleichgewicht wieder herzustellen“, sagt Dr. Rawa Arif, wissenschaftlicher Assistent in der Klinik für Herzchirurgie und verantwortlicher Operateur in diesem Projekt.

Dabei verfolgen die Wissenschaftler zwei Ansätze: Zum einen wollen sie mit Hilfe der eingeschleusten DNS-Abschnitte die Gefäßzellen der transplantierten Herzen dazu anregen, zusätzliche TIMPs herzustellen, zum anderen die Bildung der MMPs hemmen. Im Tierversuch mit Mäusen werden die Spenderherzen mit der Gentherapie behandelt, bevor sie dem Empfängertier eingepflanzt werden. Wie gut die vorbeugende Behandlung wirkt und wie lange die Wirkung anhält, sollen die geplanten Tests zeigen. „Sollte sich die Gentherapie im Tierversuch bewähren, hätten wir auf lange Sicht vielleicht die Chance, die Funktionszeit der Spenderherzen zu verlängern“, hofft Arif.

Das Forschungsprojekt wird gemeinsam von drei Arbeitsgruppen aus verschiedenen Abteilungen des interdisziplinären Herzzentrums des Universitätsklinikums Heidelberg bearbeitet. Neben dem Team um Professor Dr. Kallenbach und Dr. Rawa Arif sind die Arbeitsgruppen von Professor Dr. Oliver Müller, Abteilung für Kardiologie, Angiologie und Pneumologie der Medizinischen Universitätsklinik (Ärztlicher Direktor: Professor Dr. Hugo A. Katus) und Privatdozent Dr. Andreas H. Wagner, Institut für Physiologie und Pathophysiologie (Direktor: Professor Dr. Markus Hecker) beteiligt.

Weitere Informationen im Internet:
http://www.klinikum.uni-heidelberg.de/AG-Kardiovask-Gentherapie.118698.0.html
http://www.klinikum.uni-heidelberg.de/Forschung.112040.0.html
Kontakt:
Dr. Rawa Arif
Universitätsklinik für Herzchirurgie Heidelberg
Tel.: 06221 / 56 37 833
E-Mail: Rawa.Arif@med.uni-heidelberg.de
Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang
Das Universitätsklinikum Heidelberg ist eines der bedeutendsten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international renommierten biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung innovativer Diagnostik und Therapien sowie ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 11.000 Mitarbeiterinnen und Mitarbeiter und engagieren sich in Ausbildung und Qualifizierung. In mehr als 50 klinischen Fachabteilungen mit ca. 2.200 Betten werden jährlich rund 118.000 Patienten voll- bzw. teilstationär und rund 1.000.000 mal Patienten ambulant behandelt. Das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. Derzeit studieren ca. 3.500 angehende Ärztinnen und Ärzte in Heidelberg.

http://www.klinikum.uni-heidelberg.de

Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Leiterin Unternehmenskommunikation / Pressestelle
des Universitätsklinikums Heidelberg und der
Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 56-4536
Fax: 06221 56-4544
E-Mail: annette.tuffs@med.uni-heidelberg.de
Julia Bird
Referentin Unternehmenskommunikation / Pressestelle
des Universitätsklinikums Heidelberg und der
Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 56-7071
Fax: 06221 56-4544
E-Mail: julia.bird@med.uni-heidelberg.de
Besuchen Sie das Universitätsklinikum Heidelberg auch bei:
Facebook: http://www.klinikum.uni-heidelberg.de/facebook
Twitter: http://www.klinikum.uni-heidelberg.de/twitter
Youtube: http://www.klinikum.uni-heidelberg.de/youtube

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de/presse

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Intelligente Werkstoffe erforschen
18.11.2019 | Carl-Zeiss-Stiftung

nachricht dormakaba mit 4 Architects' Darling in Gold ausgezeichnet
13.11.2019 | dormakaba Deutschland GmbH

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics