Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschungsziel: Gehirnmetastasen verhindern

08.11.2017

Deutsche Krebshilfe fördert neurologisches Verbundprojekt unter Heidelberger Federführung drei Jahre lang mit rund 1,6 Millionen Euro

Tumorabsiedlungen im Gehirn sind schwer, schlimmstenfalls gar nicht zu bekämpfen: Sie lassen sich oftmals nur schlecht operieren, klassische Chemotherapien scheitern in der Regel, Bestrahlung schädigt auch das gesunde Gehirn. Neun Forschungsgruppen aus ganz Deutschland haben daher nun ein gemeinsames, von der Deutschen Krebshilfe gefördertes Verbundprojekt gestartet, um Strategien gegen die Neubildung der gefährlichen Hirnmetastasen zu entwickeln.


Prof. Dr. Frank Winkler

Universitätsklinikum Heidelberg

In fünf Teilprojekten untersuchen Wissenschaftler aus Düsseldorf, Essen, Frankfurt am Main, Hamburg-Eppendorf und Heidelberg systematisch verschiedene neue Ansatzpunkte für Therapien. "Man wird auch in Zukunft kaum verhindern können, dass Krebszellen in das Gehirn einwandern.

Unser Ziel ist es daher, das Auswachsen dieser Krebszellen zu großen Metastasen zu verhindern und so dieses Damoklesschwert von den Patienten zu nehmen", erläutert Professor Dr. Frank Winkler, Neurologische Universitätsklinik Heidelberg und Deutsches Krebsforschungszentrum, der das Verbundprojekt "Präventive Strategien gegen Gehirnmetastasen" leitet.

Am Ende der dreijährigen Förderperiode soll der Ansatz mit den besten experimentellen Ergebnissen im Rahmen einer klinischen Studie weiter geprüft und damit in Zukunft Patienten zugänglich gemacht werden. Die Fördersumme für das Verbundprojekt beträgt insgesamt 1,6 Millionen Euro, an die Projektgruppen von Universitätsklinikum Heidelberg und Deutschem Krebsforschungszentrum gehen 378.000 Euro.

Viele Krebsarten können Absiedlungen im Gehirn bilden, am häufigsten jedoch schwarzer Hautkrebs, bestimmte Formen des Brustkrebs und Lungentumoren. Bei rund der Hälfte der Patienten, die an diesen Krebsarten sterben, entwickeln sich im Erkrankungsverlauf Gehirnmetastasen. Chemotherapien, welche die Tumoren im restlichen Körper schädigen und erfolgreich bekämpfen, erreichen die Zellen im hermetisch abgeschirmten Gehirn nicht - die Medikamente können die sogenannte Blut-Hirn-Schranke, mit der das Gehirn gegen im Körper zirkulierende Gifte und Krankheitserreger geschützt ist, nur schlecht durchdringen.

Dazu kommt noch eine weitere Schwierigkeit: Neue Erkenntnisse aus der Forschung weisen darauf hin, dass sich Hirnmetastasen in ihrer Biologie grundsätzlich von Tumorabsiedlungen in anderen Organen unterscheiden. Medikamente, die gegen die Metastasenneubildung eingesetzt werden, wirken daher im Tierversuch fundamental anders als gegen große Tumoren. Gängige Krebsmedikamente würden daher, selbst wenn sie ins Gehirn eindringen könnten, meist nicht helfen.

Darüber hinaus weiß man derzeit noch wenig darüber, wie die Tumorzellen es überhaupt schaffen, in das Gehirn zu gelangen und es zu besiedeln. Das Team von Professor Winkler, Arbeitsgruppenleiter in der Kooperationseinheit Neuroonkologie der Neurologischen Universitätsklinik und des Deutschen Krebsforschungszentrums, war vor einigen Jahren daran beteiligt, einige generelle Abläufe zu klären: Krebszellen, die sich vom ursprünglichen Tumor gelöst haben und in die Blutbahn gelangt sind, quetschen sich durch die Wand der Blutgefäße im Gehirn und bleiben außen an diesen hängen. In diesen "Gefäß-Nischen" finden sie offenbar ideale Bedingungen und wachsen zu neuen Tumoren heran.

"Dieser vielschichtigen Problematik muss man sich koordiniert von mehreren Seiten aus nähern, um die komplexen Wechselwirkungen zwischen Tumorzellen, Gehirn-Mikromilieu und Immunsystem zu durchschauen", so Professor Dr. Wolfgang Wick, Ärztlicher Direktor der Neurologischen Universitäts­klinik Heidelberg und Leiter der Klinischen Kooperationseinheit Neuroonkologie am DKFZ.

Vorarbeiten der einzelnen Projektpartner haben bereits Hinweise auf mögliche Schwachstellen bei der Metastasenbildung im Gehirn erbracht, denen die Wissenschaftler nun im Rahmen des Verbundprojekts weiter nachgehen werden. Lohnenswerte Ziele scheinen die Prozesse vor der eigentlichen Bildung großer Metastasen zu sein: wenn sich die Krebszellen an der Außenseite der Blutgefäße festsetzen, mit diesen und den umliegenden Hirnzellen, sogenannten Astrozyten, enge Verbindungen eingehen und sich zu teilen beginnen.

Zudem könnte es sinnvoll sein, den auf die Tumorbekämpfung spezialisierten Immunzellen des Körpers (T-Zellen) ebenfalls den Übertritt in das Gehirn zu ermöglichen, und deren Aktivierung dort zu fördern.

Doch nicht nur die anzunehmende Schlüsselrolle der genannten Prozesse bei der Metastasenbildung spielte eine wichtige Rolle bei der Auswahl der Angriffspunkte: "Wir haben gezielt Mechanismus ausgewählt, von denen wir wissen, dass wir sie mit bereits vorhandenen Wirkstoffen beeinflussen können", so Winkler. "So können wir auf Medikamente zurückgreifen, die aktuell in Studien erprobt werden oder für die eine Zulassung in der Therapie einer anderen Erkrankung besteht. Auf diese Weise beschleunigen wir später den Transfer aus dem Labor zum Patienten."

Während der Förderperiode arbeiten die Wissenschaftler neben Mäusen mit Patientenmaterial wie aus dem Blut gefilterten, zirkulierenden Tumorzellen, Blutfaktoren sowie Gewebeproben aus den ursprünglichen Tumoren und Hirnmetastasen.

Bisher gibt es national und international keinen vergleichbaren Forschungsansatz, der den Bogen von präklinischen Tiermodellen über Analysen von Gewebe und Blutproben von Patienten bis hin zur Entwicklung von Früherkennungsstrategien und dem Transfer der Ergebnisse in eine klinische Studie spannt. "Insgesamt gibt es bisher noch keine derart koordinierte Forschung auf dem Gebiet der Hirnmetastasen-Prävention, geschweige denn Patientenstudien", betont der Neurologe.

"Wir werden den Verlauf vieler Krebserkrankungen aber nur dann verbessern, wenn wir deren Haupt-Todesursache, die Metastasenbildung, erfolgreich bekämpfen können. Und die Metastasenbildung im Gehirn ist nun einmal am meisten gefürchtet."

Weitere Informationen:

www.krebshilfe.de/forschen/foerderung/foerderschwerpunkte/translationale-onkologie/

www.dkfz.de/de/neuroonkologie/Mitarbeiter_AG_Winkler.html

Kontakt:
Prof. Dr. med. Frank Winkler
Geschäftsführender Oberarzt
Neurologische Universitätsklinik Heidelberg
Tel.: 06221 - 56 7504
E-Mail: frank.winkler(at)med.uni-heidelberg.de

Julia Bird | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Der bundesweite Bewerbungsprozess für den Corporate Health Award 2020 startet ab sofort
02.04.2020 | Corporate Health Initiative

nachricht Klimafreundliche Energie aus Abwärme
20.12.2019 | Technische Universität München

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Projekt »Lade-PV« gestartet: Fahrzeugintegrierte PV für Elektro-Nutzfahrzeuge

03.04.2020 | Energie und Elektrotechnik

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics