Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Förderung der amerikanischen Moore-Stiftung für zerstörungsfreies „Quanten-Elektronenmikroskop“

11.10.2012
Die im Jahr 2000 gegründete Gordon and Betty Moore Stiftung mit Sitz im kalifornischen Palo Alto unterstützt ein breites Spektrum von Projekten – von Umweltprojekten und Patientenversorgung bis hin zur Förderung innovativer Grundlagenforschung.

In diesem Jahr gehört zu ihren ausgewählten Vorhaben die Entwicklung eines „Quanten-Elektronenmikroskops“, das insbesondere für die Untersuchung biologischer Proben einen großen Fortschritt bedeuten würde.

Drei Gruppen – die „Ultraschnelle Quantenoptik“ unter der Leitung von Prof. Peter Hommelhoff am Max-Planck-Institut für Quantenoptik (MPQ) in Garching und der Friedrich-Alexander-Universität Erlangen-Nürnberg, sowie jeweils ein Wissenschaftlerteam an der Stanford Universität (Stanford, USA) und am Massachusetts Institute of Technology (Boston, USA) werden an diesem Thema koordiniert forschen.

Jede Gruppe erhält über den Zeitraum von 40 Monaten 1.145 Millionen Dollar, also knapp eine Million Euro. Das Grundprinzip ihres neuen Messinstruments geht zurück auf die bahnbrechenden Arbeiten des diesjährigen Nobelpreisträgers für Physik, Prof. Serge Haroche vom Collège de France (Paris).

Dass Elektronen nicht nur elektrisch geladene Teilchen sind, sondern wie alle Quantenteilchen auch Wellencharakter haben, ist seit rund hundert Jahren bekannt. Ihre sogenannte de Broglie-Wellenlänge liegt, bei entsprechend hohen Energien, im Nano- bis Pikometerbereich (10-9 bis 10-12 Meter), weshalb sie sich hervorragend für die Abbildung von Strukturen beispielsweise biologischer Proben eignen – hier wird eine räumliche Auflösung auf atomarer und molekularer Skala erreicht. Elektronenmikroskope haben mittlerweile einen Stammplatz in Technik und Forschung, doch der Haken bei dieser Methode ist, dass die Proben eine sehr hohe Strahlendosis erhalten, die zu einer Schädigung ihrer Struktur führen kann. Während der Aufnahme eines einzigen elektronenmikroskopischen Bildes bekommt eine Zelle in etwa die Strahlendosis, die sie durch eine weniger als 50 Meter entfernte Atombombenexplosion erhalten würde.

Dieses Problem wollen die Wissenschaftler nun mit der Methode der wechselwirkungsfreien Messung umgehen. Die Grundidee dieses Messprinzips wurde bereits vor mehr als 20 Jahren für Photonen ersonnen. Im Allgemeinen gilt, dass der Zustand eines Quantenobjekts durch den Messprozess selbst verändert oder unter Umständen sogar zerstört wird. Bei dem neuen Messprinzip wird der Spieß gewissermaßen umgedreht: Nicht der Zustand des Objekts wird durch die Beobachtung gestört – vielmehr beeinflusst seine Anwesenheit die Quanteneigenschaften des Beobachters. Experimentell realisiert wurde das Prinzip bereits in einem Team von Prof. Serge Haroche anhand von Mikrowellenresonatoren. Deren Resonanzeigenschaften ändern sich, sobald sich ein einzelnes Atom darin befindet. Die Durchlässigkeit oder Undurchlässigkeit des Resonators für Licht bzw. Mikrowellen gibt nun Auskunft über die Anwesenheit des Atoms, ohne dessen Zustand zu zerstören, da Objekt und Photonen nicht direkt miteinander in Wechselwirkung stehen.

Diese Methode des Nachweises ohne klassische Wechselwirkung wollen die Wissenschaftler nun mit Elektronen praktizieren. Der Strahl freier Elektronen soll nicht wie bei herkömmlichen Elektronenmikroskopen direkt auf die Probe gerichtet werden. Aufschluss über die Beschaffenheit der Probe gibt vielmehr die Wirkung, die sie auf die Quanteneigenschaften der Elektronen hat, ganz analog zu der Wirkung, die das in einem optischen Resonator gespeicherte Atom auf die Durchlässigkeit eines Lichtstrahls hat. Verwirklichen ließe sich dieses Konzept mit einem Elektronenresonator, der aus zwei elektrisch leitenden, dicht übereinander angeordneten Drahtschlaufen besteht. Ein im oberen Ring umlaufendes Elektron kann aufgrund seiner Quanteneigenschaften mit einer bestimmten Wahrscheinlichkeit in den unteren herunter “tunneln“, und wieder zurück, und so weiter. Sobald sich aber in der unteren Schlaufe ein undurchsichtiges Objekt, z.B. eine mit Goldteilchen markierte Probe befindet, werden diese Oszillationen abgebrochen.

„Zunächst einmal müssen wir zeigen, dass die wechselwirkungsfreie Messmethode auch mit Elektronen funktioniert. Wir haben dafür bereits wichtige technische Voraussetzungen geschaffen, z.B. Wellenleiterstrukturen, mit denen wir die Quanteneigenschaften von Elektronen gezielt manipulieren und kontrollieren können“, erklärt Prof. Peter Hommelhoff. „Die Entwicklung zu einem Mikroskop, das biologische Proben nicht-invasiv und mit hoher Auflösung abbilden kann, ist dann der nächste Schritt. Das Quanten-Elektronenmikroskop würde die verabreichten Strahlendosen erheblich reduzieren und vermeiden, dass die Strukturen der untersuchten Objekte zerstört werden. Ein faszinierendes Ziel wäre es, damit auch Filme von lebenden Zellen zu drehen – mit der räumlichen Auflösung eines Elektronenmikroskops.“

Kontakt:
Prof. Peter Hommelhoff
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 89 32905 265
E-Mail: peter.hommelhoff@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Acht Millionen Euro für die Forschung: Smarte Implantate sollen Knochen besser heilen
10.12.2019 | Universität des Saarlandes

nachricht German Design Award 2020 für Sensorschleuse Argus von dormakaba
09.12.2019 | dormakaba Deutschland GmbH

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kein Seemannsgarn: Hochseeschifffahrt soll schadstoffärmer werden

11.12.2019 | Ökologie Umwelt- Naturschutz

Vernetzte Produktion in Echtzeit: Deutsch-schwedisches Testbed geht in die zweite Phase

11.12.2019 | Informationstechnologie

Verbesserte Architekturgläser durch Plasmabehandlung – Reinigung, Vorbehandlung & Haftungssteigerung

11.12.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics