Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Exzellente Kernphysik aus Darmstadt - 1,5 Millionen Euro für TU-Kernphysiker Achim Schwenk

28.06.2012
Achim Schwenk, Professor für Kernphysik an der TU Darmstadt, ist vom Europäischen Forschungsrat (ERC) mit einem „Starting Independent Researcher Grant“ in der Kategorie „Consolidator“ für sein Forschungsprojekt „The strong interaction at neutron-rich extremes“ (STRONGINT) ausgezeichnet worden. Schwenk erhält mit 1,5 Millionen Euro die höchstmögliche Fördersumme.

Mit der Auszeichnung gehört der 37-jährige Professor zu einer Forscher-Elite: Das einzige Kriterium für die Vergabe der ERC Grants ist wissenschaftliche Exzellenz. In Deutschland gab es seit 2007 nur 205 Forscher, die einen ERC Starting Grant erhalten haben. "In der Kernphysik bricht eine neue Ära an", sagt der Physiker. Das theoretische Lehrbuch werde gerade neu geschrieben, und Darmstadt schreibt mit.

Zwei bahnbrechende Entwicklungen bereiten Schwenk und den Wissenschaftlern, die er mit den Mitteln des ERC-Grants beschäftigen will, den Boden. Erstens haben Astrophysiker in letzter Zeit erstaunliche Entdeckungen gemacht, etwa den schwersten bislang gefundenen Neutronenstern. Dieser ist doppelt so schwer wie unsere Sonne, hat aber nur etwa den Durchmesser Darmstadts. Die Materie im Innern wird durch den Gravitationsdruck derart komprimiert, dass fast alle Elektronen von Protonen eingefangen werden und so extreme Dichten von Neutronen entstehen.

Neutronen stellen mit Protonen die Bausteine von Atomkernen und Materie dar. Dabei ist nur wenig über die Struktur neutronenreicher Kerne bekannt. Die Grundlagenforschung versucht weltweit diese neue Physik zu entschlüsseln. Das ist die zweite Entwicklung, über die der junge Wissenschaftler so begeistert ist: "Wenn wir in fünf Jahren mit unseren Berechnungen zu neutronenreichen Kernen und Materie fertig sein werden, werden am neuen Forschungszentrum FAIR bei der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt einzigartige Experimente möglich sein", sagt Schwenk. FAIR (Facility for Antiproton and Ion Research) wird Atomkerne mit derartiger Wucht aufeinander schleudern, dass extrem neutronenreiche Kerne und Materie untersucht werden können, die Neutronensternen am nächsten kommen. Bei FAIR wird dann die Theorie der neutronenreichen Materie, die Schwenk mit dem ERC-Grant entwickeln will, getestet werden können. "Der ERC-Grant kommt also genau zum richtigen Zeitpunkt", freut sich der Darmstädter Forscher.

Seine Forschung widmet sich einer der vier Grundkräfte der Natur, der so genannten Starken Wechselwirkung, welche die Neutronen und Protonen im Atomkern zusammenhält. Das Akronym STRONGINT steht für "The strong interaction at neutron-rich extremes". Es geht also um die Frage, wie die Starke Wechselwirkung sich bei extremem Neutronenüberschuss im Labor und im Universum auswirkt. "Wir wollen den Mikrokosmos und den Makrokosmos zusammenbringen", sagt Schwenk. Er will also die theoretische Beschreibung von besonders neutronenreichen Kernen und von neutronenreicher Materie in der Astrophysik vereinheitlichen.

Damit verbunden wären erhebliche Erkenntnisgewinne. Neutronenreiche Atomkerne spielen für die Entstehung schwerer Elemente eine zentrale Rolle. Ihr Verständnis wird die Entstehung jenes Sternenstaubes besser beleuchten, von dem auch das Leben auf der Erde abhängt. Außerdem erwartet Schwenk, präzise Einblicke in die Eigenschaften von Atomkernen und Neutronensternen zu erhalten. "Das ist so, weil die Kräfte zwischen Neutronen in systematischen Theorien stark eingeschränkt sind."

Dies konnte Schwenk für Kalzium-Kerne beeindruckend zeigen. Dabei spielen Kräfte zwischen drei Teilchen eine entscheidende Rolle. Die Rechnungen von Schwenk und Mitarbeitern haben vorhergesagt, dass neutronenreiche Kalzium-Kerne stärker gebunden sind als das experimentell der Fall zu sein schien. "Präzisionsmessungen mit Atomfallen haben erst vor kurzem unsere Vorhersagen bestätigt. Mit STRONGINT werden wir jetzt in neue Regionen vordringen."

Der mehrfach ausgezeichnete Physiker - unter anderem erhielt er den ARCHES-Preis des Bundesministeriums für Bildung und Forschung und den Athene-Preis für gute Lehre an der TU Darmstadt - hat seit Ende der 1990er Jahre in den USA und in Kanada studiert und geforscht. Trotz der sehr guten Bedingungen dort hat er sich 2009 entschlossen, die Professur an der TU Darmstadt und im Rahmen der Helmholtz Exzellenzinitiative ExtreMe Matter Institute (EMMI) anzunehmen. „Die Bedingungen in der Kernphysik in Darmstadt sind einzigartig, sehr dynamisch und die Studenten sind super", sagt er. "Und das wird mit dem ERC Starting Grant nur noch besser!"

Pressekontakt
Prof. Dr. Achim Schwenk
Tel.: 06151/16-64235, schwenk@physik.tu-darmstadt.de
Hinweis an die Redaktionen
Ein hochauflösendes Foto von Professor Schwenk können Sie unter dem Link www.tu-darmstadt.de/pressebilder herunterladen.

MI-Nr. 53/2012, Meier/csi

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht 17 Mio. EUR für die künstliche Intelligenz in der Prozessindustrie
19.09.2019 | Technische Universität Dresden

nachricht Innovationspreis für effizientere und langlebigere Wasserstoff-Elektrolysezellen
11.09.2019 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics