Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ERC Starting Grants - Millionenförderung für LMU-Physiker

01.08.2013
Die LMU-Physiker Professor Alexander Högele und Professor Tim Liedl werden vom Europäischen Forschungsrat (ERC) mit je einem Starting Grant ausgezeichnet. Mit einer solchen Förderung unterstützt der ERC herausragende Wissenschaftlerinnen und Wissenschaftler und ihre zukunftsweisende Grundlagenforschung mit bis zu zwei Millionen Euro.

Projekt von Alexander Högele

Daten werden immer häufiger in Form von Lichtbündeln über Glasfasernetze transportiert. In Zukunft könnten einzelne Lichtteilchen (Photonen) diese Aufgabe übernehmen und eine abhörsichere Quantenkommunikation ermöglichen. Diese Lichtimpulse müssten nach dem Transport in elektrische Signale zurückgewandelt werden, indem sie kontrolliert Elektronen in einem Halbleitermaterial anregen. Wie das aussehen könnte und welche Effekte bei der Wechselwirkung von Licht mit Festkörpern sonst relevant sind, untersuchen Wissenschaftler derzeit mit Hilfe von Nanomaterialien wie Kohlenstoff-Nanoröhren.

Alexander Högele und seine Mitarbeiter produzieren ihre eigenen Nanoröhren, die sie optimal an verschiedene Versuche anpassen können. Dabei handelt es sich um einwandige Zylinder von rund einem Nanometer im Durchmesser, deren Wand aus einer Atomlage von regelmäßig angeordneten Kohlenstoffatomen besteht. Um optische Anregungen in einzelnen Nanoröhren möglichst störungsfrei zu untersuchen, haben die Forscher, einer Hängebrücke gleich, Röhren mit freitragenden Bereichen von einigen Mikrometern Länge hergestellt. Sie konnten nachweisen, dass die Elektronen im Halbleitermaterial unter diesen Bedingungen nach der Absorption von Photonen außergewöhnlich lange angeregt bleiben. Anschließend fallen sie regulär unter Lichtemission in das „Loch“ in der Atomhülle zurück, das sie hinterlassen haben. Durch diese lange Trennungsphase lassen sich die Absorptions- und Emissionsspektren der Nanoröhren scharf unterscheiden und für hochpräzise optische Spektroskopiemethoden nutzen.

In Zukunft möchten die Physiker die Kopplung zwischen Licht und den Elektron-Loch-Paaren (Exzitonen) dazu nutzen, um auch mechanische und magnetische Freiheitsgrade von halbleitenden Nanoröhren zu untersuchen. Das Exziton soll dabei als eine Art Bindeglied zwischen den elementaren Anregungen von Licht und Festkörper fungieren, also die Kopplung zwischen Photonen und Spins (elementare magnetische Anregungen) beziehungsweise Phononen (elementare mechanische Anregungen) vermitteln. Die Experimente sollen unter anderem die Grundlagen für die Verwendung von Nanoröhren in Zukunftstechnologien wie Quantenkryptographie und Quantenmetrologie erarbeiten.

Alexander Högele studierte Physik an der Ruprecht–Karls–Universität Heidelberg und an der Ludwig-Maximilians-Universität (LMU) München. Dort schloss er 2005 seine Promotion ab und arbeitete von 2006 bis 2008 als Postdoc am Institut für Quantenelektronik an der Eidgenössischen Technischen Hochschule (ETH) Zürich. Seit 2008 ist Alexander Högele Juniorprofessor für Experimentalphysik an der LMU.

Projekt von Tim Liedl

Wer versucht, in einem Bach einen Fisch zu fangen, wird schnell feststellen, dass dieser sich nicht dort befindet, wo unsere Augen ihn wahrnehmen. Die Ursache dafür ist, dass das Licht beim Eintreten in das Wasser und beim Heraustreten gebrochen wird. Während in der Natur nur Materialien mit einem positiven Brechungsindex existieren, entwickeln Wissenschaftler derzeit künstliche Strukturen, die Licht auch negativ, das heißt über das Lot hinaus, brechen sollen. Die Bausteine dieser sogenannten Metamaterialien müssen jedoch kleiner als 100 Nanometer sein. Daher arbeiten die Fachleute mit künstlichen DNA-Strängen und metallischen Nanopartikeln, die sich von selbst zu optisch aktiven Nanostrukturen zusammensetzen.

Tim Liedl und seine Mitarbeiter sind Spezialisten in der sogenannten DNA-Origami-Technik. Als wären sie mit Magneten versehen, falten sich dabei DNA-Bausteine in vorgegebene dreidimensionale Strukturen. Vor Kurzem ist es den Physikern gelungen, diese definiert mit Goldpartikeln zu besetzen und damit eine erste wichtige Eigenschaft von Licht zu verändern: die Polarisation. Auf diese Weise konnten die Wissenschaftler zeigen, dass sich DNA-Origami-Strukturen in Kombination mit Metallpartikeln grundsätzlich dazu eignen, optische Parameter gezielt einzustellen.

Die Physiker wollen nun diese Nanostrukturen unter anderem zu einem Metamaterial mit negativem Brechungsindex weiterentwickeln. In Kombination mit den bestehenden positiv brechenden Materialien ließen sich so beispielsweise optische Systeme wie Mikroskope, Solarzellen oder Lichtleiter fundamental verbessern. Ein anderer Aspekt des Projektes beschäftigt sich mit der Frage, ob optisch aktive Metamaterialien als sensible Sensoren für Viren oder spezielle Zell-Marker eingesetzt werden können.

Tim Liedl studierte Physik an der LMU München und promovierte dort in der Gruppe von Friedrich C. Simmel. 2007 bis 2009 arbeitete er als Postdoc bei William M. Shih am Dana-Farber Cancer Institute der Harvard Medical School in Boston, USA. Seit 2009 ist Tim Liedl Professor für Experimentelle Physik an der LMU München.

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb
14.08.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Europäischer Forschungsrat unterstützt Düsseldorfer Materialwissenschaftler mit 2,5 Millionen Euro
06.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics