Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ERC Advanced Grants für exzellente Bayreuther Wissenschaftler

06.12.2011
Der Europäische Forschungsrat (ERC) hat zwei Wissenschaftler der Universität Bayreuth mit hochdotierten Advanced Grants ausgezeichnet: Prof. Dr. Stephan Förster, Lehrstuhl für Physikalische Chemie I, und Prof. Dr. David Rubie, der eine Forschungsprofessur am Bayreuther Geoinstitut – einem Forschungszentrum der Universität Bayreuth – innehat. Der ERC Advanced Grant ist der höchste EU-Wissenschaftspreis. Er wird individuell an exzellente Forscherinnen und Forscher verliehen, deren Projekte für ihre jeweiligen Wissenschaftsgebiete zukunftsweisend sind und herausragende Erkenntnisse erwarten lassen.
Nanopartikeln beim Wachsen zuschauen –
Grundlagenforschung für das Design neuer Materialien
Nanopartikel sind winzige Teilchen, nicht größer als 100 Nanometer, die als Bausteine von Funktionsmaterialien in zahlreichen Hochtechnologien zum Einsatz kommen. Welche Prozesse laufen ab, wenn ein Nanopartikel entsteht und anschließend auch noch wächst, weil sich weitere molekulare Strukturen anlagern? Dieser Frage wird sich Prof. Dr. Stephan Förster in seinem Projekt "Structural evolution at the nano- and mesoscale (STREAM)" widmen, das mit 2,4 Mio. Euro gefördert wird. Zusammen mit seinen Bayreuther Mitarbeitern will er in die 'Lebensabschnitte' einzelner Nanopartikel vordringen – angefangen vom Entstehungsstadium, der sog. Keimbildung, bis hin zu späten Wachstumsphasen. Von besonderem Interesse sind beispielsweise die ultraschnelle Entstehung von Kunststoffteilchen und die Selbstorganisation von Amphiphilen, die für hochwirksame Medikamente oder Reinigungsmittel benötigt werden.

Für die experimentellen Untersuchungen in diesem Forschungsprojekt hat Förster ein neuartiges Konzept entwickelt. Es ist auf organische und anorganische Nanopartikel gleichermaßen anwendbar. Von zentraler Bedeutung ist dabei die Verbindung von Mikrofluidik-Chips mit Röntgen-Mikrostrahlbeugung. Dadurch ist es möglich, in Abständen von wenigen Tausendstel Sekunden sichtbar zu machen, wie die Keimbildung und das Wachstum von Nanopartikeln verlaufen.

Die zu erwartenden Erkenntnisse sind nicht allein für die Grundlagenforschung äußerst wertvoll. Voraussichtlich werden sie das Design molekularer Großstrukturen für technologische Anwendungen erheblich voranbringen, bis hin zur Entwicklung neuer Materialien für die Energie-, die Informations- und die Medizintechnik. "Je besser wir verstehen, wie sich molekulare Strukturen schrittweise zu immer größeren Einheiten zusammenfügen, desto effizienter können Materialien entwickelt werden, die aufgrund ihrer Eigenschaften und Strukturen für spezielle technologische Anwendungen optimal geeignet sind", erklärt Förster und fügt hinzu: "Diese Perspektive ist umso attraktiver, als wir in den nächsten Jahrzehnten mit einer zunehmenden Verknappung von Rohstoffen rechnen müssen."

Auf den Spuren der Planetengeschichte:
Neue Erkenntnisse durch Integration von Geochemie und Astrophysik
Die Erde und die terrestrischen Planeten des Sonnensystems (Merkur, Venus und Mars), die gleichfalls einen metallischen Kern und einen schalenförmigen Aufbau besitzen, sind rund 4,6 Milliarden Jahre alt. Welche Prozesse haben dazu geführt, dass sie ihre heutige Masse und Struktur haben? In seinem mit rund 1,8 Mio. Euro geförderten Projekt ACCRETE wird Prof. Dr. David Rubie dieser Thematik auf den Grund gehen, geplant ist dabei eine Zusammenarbeit mit Astrophysikern und Planetenforschern in Frankreich und den USA.

Ursprünglich hatten die Erde und die terrestrischen Planeten eine viel kleinere Masse als heute. Infolge der Gravitation haben sie jedoch zusätzliche Materie aus dem Universum an sich gezogen – ein Vorgang, der in der Forschung als "Akkretion" bezeichnet wird. Vor allem Kollisionen führten zu einer Vergrößerung der Masse. Himmelskörper, manche so groß wie der Mond, prallten auf die Planeten und verschmolzen mit ihnen. Um diese Prozesse zu berechnen, hat die Astrophysik leistungsstarke mathematische Modelle entwickelt. Unabhängig davon hat die Geochemie bisher daran gearbeitet, entstehungsgeschichtliche Prozesse im Inneren der Planeten aufzuklären. Hier entstanden infolge von Kollisionen riesige Ozeane aus Magma. Darin sonderten sich flüssige Metalle allmählich ab, sanken nach unten und bildeten den Planetenkern; flüssige Silikate hingegen bildeten einen Hauptbestandteil in darüber liegenden Schichten.

Wie sich chemische Elemente während der ersten 200 Millionen Jahre der Erdgeschichte getrennt und auf verschiedene Bereiche des Erdinneren verteilt haben, wollen Rubie und seine Mitarbeiter noch präziser erkunden, als dies in bisherigen Simulationsexperimenten gelungen ist. In den Hochdruck-Laboratorien des Bayerischen Geoinstituts können sie dafür Drücke bis zu 100 Gigapascal erzeugen, wie sie in 2.400 km Tiefe im Erdinneren herrschen. "Der innovative Charakter des ACCRETE-Projekts liegt darin, dass wir diese Forschungen und die Modelle der Astrophysik miteinander integrieren werden", erläutert Rubie. "Dadurch können wir die Erforschung der Erd- und Planetengeschichte auf eine breitere Grundlage stellen und neue Einsichten in das Sonnensystem gewinnen."

Mit Prof. Dr. David Rubie erhält zum zweiten Mal ein Wissenschaftler des Bayerischen Geoinstituts einen ERC Advanced Grant; 2009 war Dr. Daniel Frost diese Auszeichnung verliehen worden.

Ansprechpartner für weitere Informationen:

Prof. Dr. Stephan Förster
Lehrstuhl Physikalische Chemie I
Universität Bayreuth
D-95440 Bayreuth
Tel: +49 (0)921 / 55-2760
E-Mail (Sekr.): elisabeth.duengfelder@uni-bayreuth.de
Prof. Dr. David Rubie
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Tel: +49 (0)921 / 55-3711
E-Mail: dave.rubie@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Einstieg in die Nanowelt
22.06.2020 | Hochschule Aalen

nachricht Techniker Krankenkasse, EuPD Research und Handelsblatt starten Bewerbung für die Sonderpreise "Gesunde Hochschule" im Rahmen des Corporate Health Award 2020
22.05.2020 | Corporate Health Initiative

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Im Focus: Robuste Materialien in Schwingung versetzt

Kieler Physikteam beobachtet in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse

In der Physik werden sie zurzeit intensiv erforscht, in der Elektronik könnten sie ganz neue Funktionen ermöglichen: Sogenannte topologische Materialien...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Neues Verständnis der Defektbildung an Silizium-Elektroden

Theoretisch lässt sich das Speichervermögen von handelsüblichen Lithiumionen-Batterien noch vervielfachen – mit einer Elektrode, die auf Silizium anstatt auf Graphit basiert. Doch in der Praxis machen solche Akkus mit Silizium-Anoden nach wenigen Lade-Entlade-Zyklen schlapp. Ein internationales Team um Forscher des Jülicher Instituts für Energie- und Klimaforschung hat jetzt in einzigartiger Detailgenauigkeit beobachtet, wie sich die Defekte in der Anode ausbilden. Dabei entdeckten sie bislang unbekannte strukturelle Inhomogenitäten in der Grenzschicht zwischen Anode und Elektrolyt. Die Erkenntnisse sind in der Fachzeitschrift „Nature Communications“ erschienen.

Silizium-basierte Anoden können in Lithium-Ionen-Akkus prinzipiell neunmal so viel Ladung speichern wie der üblicherweise verwendete Graphit, bei gleichem...

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Social Learning in der Firma und virtuelle Seminarräume für Mitarbeiter

07.07.2020 | Seminare Workshops

„Maschinen-EKG“ soll Umwelt schonen

07.07.2020 | Maschinenbau

Erneuter Weltrekord für speedCIGS

07.07.2020 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics