Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Doppelerfolg für IFW-Forscher: Zwei ERC Grants bewilligt

12.07.2012
Zwei junge Wissenschaftler des Leibniz-Instituts für Festkörper- und Werkstoffforschung Dresden (IFW) - der Chemiker Samuel Sanchez und der Physiker Denys Makarov – erhalten einen „Starting Grant“ des Europäischen Forschungsrates (ERC).
In einem zweistufigen Verfahren haben sich die Dresdner Wissenschaftler im Wettbewerb der europäischen Nachwuchselite erfolgreich behauptet. Sie erhalten für ihre Projekte eine Förderung von je rund 1,5 Millionen Euro, verteilt auf fünf Jahre.

Dr. Denys Makarov und Dr. Samuel Sanchez, beide Postdocs am Institut für Integrative Nanowissenschaften am IFW Dresden wurden vom Europäischen Forschungsrat für je einen der hochdotierten ERC Starting Grants ausgewählt. Sie konnten sich in der Ausschreibung für die europäische Nachwuchsforscherelite mit innovativen und bahnbrechenden Forschungsprojekten durchsetzen, der Physiker Dr. Denys Makarov mit dem Projekt "Shapeable Magnetoelectronics in Research and Technology" und der Chemiker Dr. Samuel Sanchez mit dem Projekt „Lab-in-a-tube and Nanorobotic biosensors“.

Für einen ERC Starting Grant können sich herausragende europäische Nachwuchsforscher bewerben. Neben einem exzellenten Forschungsantrag müssen die Wissenschaftler eine bisher beeindruckende und weiterhin vielversprechende wissenschaftliche Laufbahn nachweisen. Dr. Denys Makarov und Samuel Sanchez ist dies gelungen. Sie sind die ersten beiden Forscher des IFW Dresden, die mit einem „ERC Starting Grant“ ausgezeichnet werden. „Diese beiden Projekte zeigen in beeindruckender Weise, wie unkonventionelle Denkweisen und das Verlassen ausgetretener Pfade zu Durchbrüchen in Wissenschaft und Forschung führen. Ich freue mich sehr, dass es mit dem ERC eine europäische Institution gibt, die genau diese Art der wissenschaftlichen Exzellenz fördert.“ sagt Professor Oliver Schmidt, Direktor des Instituts für Integrative Nanowissenschaften im IFW Dresden.

Dr. Denys Makarov will mit seinem Projekt "Shapeable Magnetoelectronics in Research and Technology" das konventionelle Modell elektronischer Bauelemente durchbrechen und eine flexible und dehnbare Magnetoelektronik entwickeln. Diese Elemente haben die einzigartige Eigenschaft, nach ihrer Herstellung beliebig verformbar und damit vielseitig einsetzbar zu sein. Damit eignen sie sich besonders für die Anwendung in biomedizinischen Fluidsystemen, wo flexible Kanäle mit Biegungen und Windungen die Regel sind. Außerdem können flexible Magnetsensoren in andere, bereits bestehende flexible elektronische Bauelemente integriert werden, um magnetische Felder zu detektieren und auf sie zu reagieren.

Ein vielversprechendes Anwendungsgebiet für flexible Magnetoelektronik sieht Makarov in Elektromotoren und magnetischen Lagerungen. Dort sind dünne dehnbare Magnetsensoren den herkömmlichen Hall-Sensoren überlegen, da sie direkt in den schmalen gekrümmten Spalt zwischen Stator und Rotor platziert werden können, um das Magnetfeld in Echtzeit zu messen. Durch die Verwendung kostengünstiger elastischer Polymere als Substratmaterial sind die dehnbaren Magnetsensoren zudem deutlich billiger als die bisher üblichen Sensoren auf Halbleiterbasis.

Das Projekt von Dr. Samuel Sanchez mit dem Titel „Lab-in-a-tube and Nanorobotic biosensors“ verfolgt das Ziel, funktionale Mikroröhren aus aufgerollten Nanomembranen zu entwickeln und für Anwendungen in biologischen Systemen kompatibel zu machen. Die Mikroröhren sollen als 3D-Mikroreaktoren für lebende Zellen, als integrierbare Biosensoren und als selbst-angetriebene Nanomotoren dienen. Eine besondere Herausforderung für biomedizinische und umwelttechnische Anwendungen dieser neuen Technologie stellt dabei die Biokompatibilität der Nanomotoren und –transporter dar, für die neue Antriebsmechanismen und –agenzien gefunden werden müssen. Transparente Mikroröhren sind außerdem bestens geeignet, um das Verhalten lebender Zellen in einer Umgebung zu untersuchen, die der natürlichen Einbettung in eine dreidimensionale extrazelluläre Matrix sehr nah kommt. Damit werden Langzeituntersuchungen und Manipulationen von Zellkernteilung, DNA-Veränderung und Zelldifferenzierung möglich.

Beide Projekte wurden vom Europäischen Forschungsrat als besonders vielversprechend, innovativ und bahnbrechend beurteilt und werden nun über fünf Jahre mit je1,5 Millionen Euro unterstützt.

Der „ERC Starting Grant“ ist eine Förderlinie des Europäischen Forschungsrats für exzellente Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftler und wird seit 2008 vergeben. Das hoch kompetitive Programm ist themenoffen und hat seinen Schwerpunkt in der Grundlagen- und Pionierforschung. Einmal jährlich werden nach einer Ausschreibung die besten Projektideen zur Förderung ausgewählt. Hier erfolgreich zu sein, bedeutet eine große Auszeichnung für Wissenschaftler und ihre Forschung.

Pressekontakt:
Dr. Carola Langer
Referentin des Wissenschaftlichen Direktors
Tel. +49 351 4659-234
c.langer@ifw-dresden.de

Dr. Denys Makarov
Institut für Integrative Nanowissenschaften am IFW Dresden
Tel. +49 351 4659-648
d.makarov@ifw-dresden.de

Dr. Samuel Sanchez
Institut für Integrative Nanowissenschaften am IFW Dresden
Tel. +49 351 4659-845
s.sanchez@ifw-dresden.de

Dr. Carola Langer | idw
Weitere Informationen:
http://www.ifw-dresden.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht 17 Mio. EUR für die künstliche Intelligenz in der Prozessindustrie
19.09.2019 | Technische Universität Dresden

nachricht Innovationspreis für effizientere und langlebigere Wasserstoff-Elektrolysezellen
11.09.2019 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics