Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DFG gibt 2,1 Millionen Euro für neuartige Anlage zur Röntgentomographie in der Materialforschung

21.03.2016

Materialforscher verändern die inneren Strukturen von Werkstoffen, um zum Beispiel Stahl härter, Oberflächen hitzebeständiger oder Batterien leistungsfähiger zu machen. Eine neuartige Röntgentomographie hilft jetzt Saarbrücker Wissenschaftlern dabei, Materialien in Nanodimensionen viel genauer als bisher abzubilden und dabei auch dynamische Prozesse wie etwa die Verformung von Metallen zu analysieren. Die Deutsche Forschungsgemeinschaft fördert das interdisziplinäre Forschungskonzept und die neue Technologie mit 2,1 Millionen Euro.

Den Antrag dafür hatten Materialwissenschaftler der Universität des Saarlandes und des Fraunhofer-Instituts für Zerstörungsfreie Prüfverfahren gemeinsam mit Informatikern und Mathematikern gestellt.

Die neue Anlage erzeugt Röntgenaufnahmen mit einer bisher im Labor nicht erreichbaren Auflösung von bis zu 60 Nanometern, das ist etwa tausendmal kleiner als ein menschliches Haar. „Wir können mit dieser Röntgentechnologie daher nicht nur kleinste Poren und Risse in Materialien sichtbar machen, sondern erstmalig auch die komplexen inneren Strukturen der Werkstoffe bis hin zu Mikro- oder Nanodimensionen.

Damit können wir noch besser verstehen, warum Werkstoffe durch verschiedene Bearbeitungsschritte ganz neue Eigenschaften erhalten“, erläutert Randolf Hanke, Leiter des Fraunhofer-Instituts für Zerstörungsfreie Prüfverfahren in Saarbrücken und seit kurzem Honorarprofessor der Saar-Uni. Er ist einer der führenden Wissenschaftler für die experimentelle Entwicklung der Röntgentomographie in Deutschland.

An seinem Lehrstuhl für Röntgenmikroskopie an der Universität Würzburg hat er die nun eingesetzte Röntgentomographie im Rahmen der Exzellenzinitiative entwickelt. Gemeinsam mit Professor Hans-Georg Herrmann, der am Fraunhofer-Institut und der Saar-Uni forscht, und den weiteren Partnern will er die Technologie in Saarbrücken vorantreiben und stellt dafür auch die Räumlichkeiten und den technischen Support zur Verfügung.

Für die Materialforscher an der Saar-Uni ist die Röntgentomographie eine entscheidende Ergänzung der vielfältigen 3D-Analysetechniken, die bereits auf dem Saarbrücker Campus angewendet und entwickelt werden. Diese werden auch dazu dienen, die Aussagekraft der Röntgenaufnahmen zu ergänzen und zu überprüfen, um die Materialien noch besser in allen Details zu verstehen. Mit der bisher schon angewendeten Nanotomographie können die Wissenschaftler zum Beispiel mit einer Genauigkeit von bis zu zehn Nanometern zweidimensionale Serienschnitte von Materialien am Computer zu einem äußerst detaillierten 3D-Modell zusammenfügen.

Die Atomsondentomographie hingegen zeigt die inneren Strukturen der Materialien sogar bis hin zum einzelnen Atom „Wir können also nicht nur analysieren, welche Atome auf welche Weise in einem Werkstoff angeordnet sind, sondern wir veranschaulichen auch die exakte Gitterstruktur der Kristalle und zeigen, welche Nanostrukturen daraus geformt werden.“, erläutert Frank Mücklich, Professor für Funktionswerkstoffe der Saar-Uni.

Im Unterschied zur Röntgentomographie zerstören die bisherigen Verfahren jedoch zwangsläufig die winzigen Proben. Außerdem lassen sich damit Veränderungsprozesse nicht direkt beobachten, sondern nur nachträglich rekonstruieren. Deshalb hat Frank Mücklich mehrere Professoren der Materialforschung mit ins Boot genommen. Durch das Röntgenverfahren kann etwa Christian Motz besonders an den kritischen Stellen noch besser analysieren, wie sich zum Beispiel Stahl verändert, wenn er in die Länge gezogen oder gepresst wird. Auch bei der Forschung an Batterien, der sich Volker Presser widmet, ist es entscheidend zu beobachten, wie sich die inneren Strukturen der Speichermaterialien verhalten, wenn diese be- oder entladen werden. Für das theoretische Verständnis dieser Phänomene entwickeln Stefan Diebels von der Saar-Uni und Peter Gumbsch vom Karlsruher Institut für Technologie neue Modellierungsansätze.

Da bei der Röntgentomographie in kurzer Zeit ungewöhnlich große Datenmengen anfallen, die am Computer strukturiert und analysiert werden müssen, arbeiten die Saarbrücker Materialwissenschaftler zudem eng mit Informatikern und Mathematikern zusammen. „Für die direkte Beobachtung von Veränderungsprozessen ist es entscheidend, dass man die Messdaten sehr genau, aber auch extrem schnell analysieren kann“, erklärt Philipp Slusallek, Informatik-Professor der Saar-Uni und Forscher am DFKI. Mit dem Röntgenverfahren ließen sich darüber hinaus auch viele Materialien im hohen Durchsatz zerstörungsfrei überprüfen. „Neue Programmiermethoden und Algorithmen, die hier in Saarbrücken entwickelt wurden und werden, erlauben es uns, die dabei anfallenden riesigen Datenmengen mit maximaler Leistung und hoher Effizienz zu speichern und zu bearbeiten“, ergänzt Slusallek. An diesen Forschungsprojekten sind auch die Mathematik-Professoren Thomas Schuster und Joachim Weickert, beide Saar-Uni, eng beteiligt.

Die saarländische Ministerpräsidentin Annegret Kramp-Karrenbauer zeigte sich sehr erfreut über die DFG-Bewilligung: „Auch der interdisziplinäre und institutionenübergreifende Ansatz der Saarbrücker Wissenschaftler hat die DFG überzeugt. Die mehr als zwei Millionen Euro für das Spezial-Röntgengerät sind im Saarland sehr gut angelegt, da das Wissenschaftlerteam ausgesprochen zukunftsweisende Forschung im Bereich der Materialwissenschaft und Werkstofftechnik im Saarland betreibt. Ich kann den Verantwortlichen nur herzlich gratulieren und ihnen wünschen, dass sie mit dem jetzt neu anzuschaffenden Spezialmikroskop zahlreiche bislang ungeklärte Fragen in der Materialforschung beantworten können“, so die Ministerpräsidentin. Das Saarland zahlt an die von Bund und Ländern gemeinsam getragene und finanzierte DFG für ihre Aufgaben der Forschungsförderung jährlich rund 12 Millionen Euro.

Pressemitteilung der DFG zum Großgeräteprogramm:

www.dfg.de/service/presse/pressemitteilungen/2016/pressemitteilung_nr_11/index.html

Pressefotos unter: www.uni-saarland.de/pressefotos

Fragen beantworten:
Prof. Dr. Randolf Hanke
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren
Mail: randolf.hanke@iis.fraunhofer.de
Tel. 0681/9302-3800

Prof. Dr. Frank Mücklich
Universität des Saarlandes
Tel. 0681/302-70500
Mail: muecke@matsci.uni-sb.de

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610).

Weitere Informationen:

http://www.dfg.de/service/presse/pressemitteilungen/2016/pressemitteilung_nr_11/...
http://www.materialwissenschaft.uni-saarland.de
http://www.izfp.fraunhofer.de

Friederike Meyer zu Tittingdorf | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht 17 Mio. EUR für die künstliche Intelligenz in der Prozessindustrie
19.09.2019 | Technische Universität Dresden

nachricht Innovationspreis für effizientere und langlebigere Wasserstoff-Elektrolysezellen
11.09.2019 | Hahn-Schickard

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics