DFG fördert für weitere drei Jahre Forschungen zu Kieselalgen

Rasterelektronenmikroskopische Aufnahme der Biosilica-Struktur der Kieselalge Cyclotella cryptica Damian Pawolski, B CUBE, TU Dresden

Das Forschungsprojekt beschäftigt sich mit Kieselalgen (in der Fachsprache Diatomeen genannt). Diese einzelligen, eukaryotischen Mikroorganismen kommen in allen wässrigen Lebensräumen vor und gehören zu den wichtigsten biologischen Primärproduzenten in den Weltmeeren. Das wohl beeindruckendste Merkmal der Kieselalgen sind die ungewöhnlichen Strukturen ihrer Zellwände.

Diese bestehen aus anorganischem Material, SiO2 (Silica), und weisen bei jeder Art spezifische Strukturelemente auf (z. B. Porenmuster), die bis in den Nanometerbereich hinein regelmäßig angeordnet sind. Die Bildung des Biosilica durch Kieselalgen ist ein besonders faszinierendes Beispiel für biologische Formgebung (Morphogenese) und ein geeignetes Modellsystem, um molekulare Grundlagen der biologischen Bildung von Mineralien (Biomineralisation) zu untersuchen.

Die Forschergruppe „Nanomee“ hat es sich zum Ziel gesetzt, die Biomolekül-gesteuerten, im Nano- und Mikromaßstab ablaufenden Prozesse zu verstehen, die es den Kieselalgen ermöglichen, artspezifische Silicastrukturen zu erzeugen. In der vorangehenden Förderperiode hat die Forschergruppe Durchbrüche bei der Entdeckung neuer Biosilica bildender Proteine, der Lokalisation von Proteinen mittels höchstauflösender Fluoreszenzmikroskopie sowie der Assoziation Silica bildender organischer Komponenten mit Biomembranen erzielt.

Die neuen Erkenntnisse, haben eine Vielzahl weiterer Fragen zum Mechanismus biologischer Silica-Bildung aufgeworfen, die in der nächsten Förderperiode beantwortet werden sollen. Diese Aufgabe wird wesentlich unterstützt durch die Aufnahme von zwei neuen Projektgruppen in den Bereichen Strukturbiologie und Zellbiologie. Schwerpunkte in der nächsten Förderperiode sind die Aufklärung der molekularen Struktur der organisch-anorganischen Grenzfläche sowie die in vivo und in vitro Analyse der Assemblierung der Silica-Biosynthesemaschinerie.

Die Ergebnisse der Forschergruppe tragen wesentlich zum Verständnis der biologischen Mineralbildung (Biomineralisation) und Biomorphogenese bei. Darüber hinaus könnten diese Erkenntnisse genutzt werden, um biomimetische und biotechnologische Synthesen von neuen funktionellen Materialien zu ermöglichen, die ressourcenschonender sind als konventionelle Synthesemethoden.

Prof. Nils Kröger (Biomimetische Materialien, Zentrum für Innovationskompetenz B CUBE der TU Dresden) und Prof. Eike Brunner (Bioanalytische Chemie, TU Dresden) agieren auch weiterhin als Sprecher bzw. Co-Sprecher des Konsortiums. Des Weiteren sind von der TU Dresden Dr. Michael Schlierf (Molekulare Biophysik, Zentrum für Innovationskompetenz B CUBE) und Prof. Gianaurelio Cuniberti (Max-Bergmann-Zentrum für Biomaterialien) an dem Forschungsverbund beteiligt.

Auswärtige Mitglieder sind Dr. Andrej Shevchenko (Massenspektrometrie von Biomolekülen) vom Max-Planck-Institut für Molekulare Zellbiologie und Genetik in Dresden, Prof. Claudia Steinem (Biomolekulare Chemie) von der Georg-August-Universität Göttingen, Prof. Armin Geyer (Bioorganische Chemie) und Prof. Uwe Meier (Zellbiologie) von der Philipps-Universität Marburg sowie Prof. Marc Baldus (Strukturbiologie) von der Universität Utrecht in den Niederlanden. Die Forscher erhalten in der neuen dreijährigen Förderperiode insgesamt ca. 2,1 Millionen Euro.

Informationen für Journalisten:

Prof. Nils Kröger, ZIK B CUBE, TU Dresden, Tel.: 0351 463 40359
E-Mail: kroeger@tu-dresden.de

Prof. Eike Brunner, Fachrichtung Chemie und Lebensmittelchemie, TU Dresden,
Tel.: 0351 463 37152, E-Mail: eike.brunner@tu-dresden.de

http://www.tu-dresden.de/bcube
https://tu-dresden.de/mn/chemie
http://www.nanomee.de

Media Contact

Kim-Astrid Magister idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer