Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Deutscher Zukunftspreis für superkurze Lichtblitze in der Produktion

05.12.2013
Forscherteam erhält Preis des Bundespräsidenten für Arbeiten zur Nutzung von innovativen Ultrakurzpulslasern in der industriellen Serienfertigung.

Weil sie mit ultrakurzen Laserpulsen völlig neue Perspektiven in der industriellen Fertigung erschlossen haben, sind Mitarbeiter von Bosch, Trumpf und der Universität Jena am 4. Dezember mit dem Deutschen Zukunftspreis 2013 ausgezeichnet worden.

Bundespräsident Joachim Gauck überreichte den mit 250.000 Euro dotierten Preis in Berlin im Rahmen einer festlichen Veranstaltung an Dr. Jens König (Robert Bosch GmbH), Dr. Dirk Sutter (TRUMPF Laser GmbH + Co. KG) und Prof. Dr. Stefan Nolte (Friedrich-Schiller Universität Jena/Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF Jena).

Ihr Projekt „Ultrakurzpulslaser für die industrielle Massenfertigung – Produzieren mit Lichtblitzen“ konnte sich in der Finalrunde gegen zwei weitere herausragende Projekte aus dem Bereich der Photonik durchsetzen. Die Grundlage für diesen Erfolg wurde durch die Projektförderung des Bundesministeriums für Bildung und Forschung (BMBF) geschaffen.

Dem Forscherteam ist es mit seinen Arbeiten gelungen, Ultrakurzpulslaser fit für den Einsatz in der Industrie zu machen. Sie ebneten damit den Weg für eine hochpräzise Herstellung winziger Strukturen – und zur industriellen Fertigung neuartiger Produkte.

Laser der Extreme

Das Besondere am Ultrakurzpulslaser (UKP-Laser): Er ist ein Laser der Extreme. Höchste Pulsintensitäten bei kürzesten Pulsdauern von nur wenigen Pikosekunden sind die Merkmale dieser neuen Lasergeneration. Eine Pikosekunde ist die unglaublich kurze Zeitspanne von 0,000 000 000 001 Sekunden. Zum Vergleich: In drei Pikosekunden legt das Licht gerade mal einen Millimeter zurück. Und da geht noch mehr: Zurzeit dringen kommerzielle UKP-Laser schon in die nächstkleinere Einheit, in den Femtosekundenbereich, hinein.

Bei den Ultrakurzpulslasern wird der Laserstrahl äußerst präzise auf einen sehr kleinen Bereich konzentriert. Durch die enorm kurzen Pulsdauern wird nur dieser Bereich bei rund 6.000 Grad Celsius direkt verdampft, und der umliegende Bereich wird nicht erhitzt.

Die Wärme-Einflusszone reicht nur etwa einen Tausendstel Millimeter in den Werkstoff. Das Material in der Umgebung ermüdet nicht und wird auch nicht spröde. Fachleute sagen daher, UKP-Laser sind minimalinvasiv. So kann man beispielsweise trotz der hoch konzentrierten Energie des Lasers selbst auf einem Streichholzkopf feinste Strukturen herstellen, ohne diesen zu entflammen.

Universalwerkzeug Ultrakurzpulslaser: Erfolg aus BMBF-Projektförderung

Dies alles eröffnet vollkommen neue Möglichkeiten zur berührungslosen Bearbeitung fast aller Materialien: Ob beim Schneiden dünner, kratzfester Displaygläser oder dem Vereinzeln von Halbleiterchips auf immer dünneren Wafern – UKP-Laser sind aus der Smartphone-Fertigung heute kaum noch wegzudenken. Gleiches gilt für die Medizintechnik: Ultrakurze Laserpulse ermöglichen hochpräzise geschnittene Gefäßimplantate – sogenannte Stents – die besser verträglich sind und die Blutgefäße länger als bisher offen halten.

Im Automobilbau sorgen die lasergebohrten, extrem feinen Düsen von Benzin-Direkteinspritzventilen dafür, dass moderne Motoren immer sparsamer werden und strengere Abgasnormen erfüllen. Und das sind nur einige Beispiele für die vielfältigen Einsatzmöglichkeiten ultrakurzer Laserpulse. Allein die Firma Bosch hat nach eigenen Angaben bereits rund 30 Millionen Bauteile mittels Ultrakurzpulslaser hergestellt.

Anliegen des Deutschen Zukunftspreises ist es, Arbeiten auszuzeichnen, die aus Ideen Erfolge machen. Der in diesem Jahr ausgezeichnete Erfolg wurde möglich durch die langjährige enge Zusammenarbeit eines Unternehmens der Lasertechnik mit einem Forschungsinstitut und einem Anwender der Technologie. Denn nur so konnte das Henne-Ei-Problem gelöst werden: Ohne industrietaugliche Laserquelle kein Einsatz in der Serienfertigung und ohne entsprechende Verkaufsperspektiven keine industrietaugliche Laserquelle.

Dank der konsequenten und nachhaltigen Förderung durch das Bundesministerium für Bildung und Forschung auf dem Gebiet der Photonik sind heute die enormen Vorteile der hochpräzise und minimalinvasiv abtragenden Ultrakurzpulslaser für die Industrie nutzbar. Die Grundlagen für die erfolgreiche Zusammenarbeit des Siegerteams wurden von 2000 bis 2008 in den Verbundprojekten PRIMUS und PROMPTUS gelegt: Über einen Zeitraum von acht Jahren förderte das BMBF die beiden Projekte mit rund 16 Millionen Euro. Mit der Projektträgerschaft hatte das BMBF die VDI Technologiezentrum GmbH beauftragt. Im Anschluss an die Verbundprojekte wurde das Verfahren von den Partnern bis zur Serienreife entwickelt. Hier gilt: Forschung und Innovation brauchen einen langen Atem.

Mit seiner Projektförderung unterstützt das BMBF solche nachhaltigen Kooperationen unterschiedlicher Akteure auf allen Ebenen – von der Grundlagenforschung bis hin zur Anwendung. In der Folge hat Deutschland auf dem Gebiet der Ultrakurzpulstechnologie heute eine weltweit führende Position inne. Die erfolgreiche Innovationspolitik Deutschlands, die gerade solche Kooperationen fördert, ist weltweit anerkannt.

Daniela Metz | idw
Weitere Informationen:
http://www.photonikforschung.de
http://www.deutscher-zukunftspreis.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb
14.08.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Europäischer Forschungsrat unterstützt Düsseldorfer Materialwissenschaftler mit 2,5 Millionen Euro
06.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics