Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Biophysik zur Neurobiologie

18.06.2009
Wissenschaftspreis des Stifterverbandes für die Deutsche Wissenschaft an Prof. Dr. Ernst Bamberg, Direktor am Max-Planck-Institut für Biophysik in Frankfurt am Main

Der Biophysiker Ernst Bamberg wird für seine fundamentalen Arbeiten auf dem Gebiet der Membranbiophysik ausgezeichnet, die zur Entdeckung und neurobiologischen Anwendung lichtaktivierbarer Ionenkanäle, der sogenannten Channelrhodopsine geführt haben. Die Anwendung dieser einzigartigen Kanäle und der lichtgetriebenen Chloridpumpe Halorhodopsin hat eine Revolution in der Neurobiologie ausgelöst, da es jetzt möglich ist, Nervenzellen im Gehirn durch Licht ein- und abzuschalten. Mit der Entdeckung der Channelrhodopsine wurde das neue, inzwischen weltweit bearbeitete Gebiet der Optogenetik erschlossen. Im Rahmen der Jahreshauptversammlung der Max-Planck-Gesellschaft am 18. Juni 2009 in Mainz wird der Vorsitzende des Stifterverbandes für die Deutsche Wissenschaft, Dr. Arend Oetker, den mit 50 000 Euro dotierten Wissenschaftspreis an Bamberg überreichen.

Der Transport von Ladungen in Form von positiv und negativ geladenen Ionen über die Zellmembran spielt bei der Signalübertragung und Stoffaustausch in Zellen eine bedeutende Rolle. Ernst Bamberg hat sich seit Beginn seiner Forscherlaufbahn mit experimentellen und theoretischen Grundlagen zum Mechanismus des Ladungstransports über biologische Membranen beschäftigt, und dabei insbesondere Licht und durch Licht aktivierbare Moleküle eingesetzt. Schwerpunkt seiner Arbeiten war die Funktionsanalyse von mit den üblichen elektrophysiologischen Methoden schwer zugänglichen Transportern und Ionenpumpen.

So gelang es Bamberg erstmalig, durch Licht freisetzbare, energiehaltige Moleküle zum schnellen Anschalten von Membrantransportproteinen in vitro und in situ einzusetzen, und somit über die elektrophysiologische Bestimmung einzelner Teilreaktionen wichtige Informationen zum Mechanismus dieser Proteine zu erhalten. Mithilfe der sogenannten Voltage-Clamp-Fluorometry konnte er bei bestimmten, äußerst wichtigen Membrantransportreaktionen unter physiologischen Bedingungen in einzelnen Zellen den Ionentransport und die Konformationsdynamik miteinander korrelieren.

Darüber hinaus gelang ihm die elektrische und elektrophysiologische Charakterisierung der Licht-aktivierbaren mikrobiellen Rhodopsine, die Ähnlichkeiten mit den Sehpigmenten ("Rhodopsinen") des menschlichen Auges aufweisen. Die elektrophysiologische Beschreibung der beiden Ionenpumpen Bakteriorhodopsin und Halorhodopsin in eukaryotischen Zellen erlaubte, deren Tranporteigenschaften erstmalig direkt unter kontrollierten elektrischen Parametern zu bestimmen, wie sie in der natürlichen Umgebung vorkommen.

Mit dieser experimentellen Vorgehensweise wurde die Entdeckung der Licht-aktivierbaren Ionenkanäle Channelrhodopsin1und 2 in den Jahren 2002 und 2003 möglich. Bis zu diesem Zeitpunkt waren Licht-aktivierte Ionenkanäle unbekannt. Ernst Bamberg, sein ehemaliger Mitarbeiter Georg Nagel, der heute an der Universität Würzburg lehrt, und Peter Hegemann von der Humboldt-Universität, Berlin gelang es, diese einzigartigen Ionenkanäle aus der einzelligen Grünalge Chlamydomonas reinhardtii in Zellen von Wirbeltieren herzustellen und als die Zellen depolarisierende Kanäle zu beschreiben.

Bamberg, Hegemann und Nagel erkannten das technische Potenzial der Channelrhodopsine für die Neuro- und Zellbiologie und dokumentierten dies in einer Patentanmeldung im Jahre 2002 im Detail. In Nervenzellen sollten sich Channelrhodopsin2 und die Licht-getriebene Chloridpumpe Halorhodopsin als lang gesuchtes Werkzeug für die Neurobiologie und die Hirnforschung erweisen. Die Herstellung von Channelrhodopsin2 in elektrisch erregbaren Zellen in Kultur oder in lebenden Tieren führt zu einer Licht-induzierten Anregung der Zellen. Dabei wird der Ionenkanal geöffnet und die Zelle durch den Einstrom von Natrium-Ionen depolarisiert. Als Konsequenz dieses Vorgangs beginnt eine Nervenzelle zu "feuern", d.h. Aktionspotenziale auszusenden.

Die experimentelle Bestätigung an Neuronen und Muskelzellen gelang Bamberg und Nagel in Zusammenarbeit mit Alexander Gottschalk von der Goethe-Universität, Frankfurt und mit Karl Deisseroth von der Stanford University. Sowohl im transgenen Fadenwurm C. elegans als auch in kultivierten Hippocampus Zellen konnte eine präzise Lichtaktivierung bzw. Inaktivierung von Neuronen und Muskelzellen nachgewiesen werden. Mit diesen Arbeiten, von denen eine von der Fachzeitschrift Nature zu den Top Publikationen des Jahres 2007 gewählt wurde, gelang endgütig der Durchbruch für die Neurobiologie.

Neben der Bedeutung als Werkzeug in der neurobiologischen Grundlagenforschung, bergen die Licht-geschalteten Kanäle auch ein großes Potenzial für medizinische Anwendungen, beispielsweise für die Wiederherstellung des Sehens bei bestimmten Erblindungen sowie bei der Behandlung von Parkinson und Epilepsie (Ersatz der stimulierenden Elektroden durch Licht mit allen oben skizzierten Vorteilen). Dies wurde in der Folge durch einige Aufsehen erregende Arbeiten anderer Forschergruppen bestätigt, so durch Studien zur Wiederherstellung des Sehens an Photorezeptor-defizienten Mäusen oder Arbeiten zu Licht induzierten Verhaltensreaktionen von Nagern.

Der neue methodische Ansatz der Optogenetik beginnt, weite Teile der Neurobiologie zu revolutionieren, da in vielen Fällen die bisher üblichen stimulierenden Elektroden einfach durch eine nicht-invasive Belichtung ersetzt werden können. Auf Grund der sich jetzt abzeichnenden vielfältigen Möglichkeiten nicht nur in der Neurobiologie, sondern auch in der Zellbiologie bis hin zur Wirkstoffsuche, setzen inzwischen Hunderte von Labors weltweit Channelrhodopsine bei der Beantwortung ihrer Fragestellungen ein. "Die derzeitige Entwicklung lässt darauf schließen, dass Channelrhodopsine in der Zukunft eine ähnliche Bedeutung in der Neurobiologie erlangen werden, wie das ubiquitär eingesetzte Green Fluorescent Protein (GFP) heute in der Zellbiologie, für dessen Entdeckung und Anwendung 2008 der Nobelpreis für Chemie verliehen wurde", betont Bambergs Kollege Hartmut Michel.

Originalveröffentlichung:

Fendler, K., Grell, E., Haubs, M. und Bamberg, E.:
Pump currents generated by the purified Na+K+-ATPase from kidney on black lipid membranes.

EMBO J. 4, 3079-3085 (1985)

Bamberg, E., Tittor, J.und Oesterhelt, D.:
Light-driven proton or chloride pumping by halorhodopsin..
Proc. Natl. Acad. Sci. USA 90, 639-643 (1993)
Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P. und Bamberg, E.:
Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
Proc. Natl. Acad. Sci. 100, 13940-13945 (2003)
Geibel, S., Kaplan, J.H., Bamberg, E. und Friedrich, T.:
Conformational Dynamics of the Na+/K+-ATPase probed by voltage clamp fluorometry.

Proc. Natl. Acad. Sci. 100, 964-969 (2003).

Boyden, E.S., F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth:
Millisecond-timescale, genetically targeted optical control of neural activity.
Nature Neuroscience 8(9):1263-1268 (2005).
Zhang, F., Wang, L., Brauner, M., Liewald, J. F., Kay, K., Watzke, N., Wood, P. G., Bamberg, E., Nagel, G., Gottschalk, A. und Deisseroth, K.:
Multimodal fast optical interrogation of neural circuitry
Nature 446, 633-639 (2007)
Weitere Informationen erhalten Sie von:
Prof. Dr. Ernst Bamberg / Heidi Bergemann (Sekretariat)
Max-Planck-Institut für Biophysik, Frankfurt am Main
Tel.: +49 69 6303-200
E-Mail: secretary-bamberg@biophys.mpg.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Weltweit einzigartige Femtosekundenlaseranlage eingeweiht
21.06.2018 | Hochschule RheinMain

nachricht Stahl-Innovationspreis 2018: Mikro-Dampfturbine ausgezeichnet
21.06.2018 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics