Forscher der Universität Stuttgart gewinnen internationalen Wettbewerb in Molekularer Simulation

Forscher der Universität Stuttgart haben die „Industrial Fluid Properties Simulation Challenge (IFPSC) 2007“ gewonnen. Der Preis geht an Dipl.-Ing. Bernhard Eckl, Dr.-Ing. Jadran Vrabec sowie Prof. Hans Hasse vom Institut für Technische Thermodynamik und Thermische Verfahrenstechnik (ITT).

Bei dem internationalen Wettbewerb waren Eigenschaften des industriell wichtigen, aber hoch gefährlichen Stoffes Ethylenoxid per Simulation vorherzusagen. Die Arbeiten sind unter anderem Teil des Sonderforschungsbereichs (SFB) 716 „Dynamische Modellierung von Systemen mit großen Teilchenzahlen“ sowie des Transferbereichs 66 „Molekulare Modellierung und Simulation zur Vorhersage von Stoffdaten für industrielle Anwendungen“, bei denen die Universität Stuttgart Sprecherhochschule ist. Sie fließen auch in das vor kurzem von der Deutschen Forschungsgemeinschaft bewilligte Exzellenzcluster „Simulation Technology“ an der Uni Stuttgart ein.

Der Wettbewerb hat das Ziel, die Daten wichtiger industrieller Stoffe mit Methoden der molekularen Simulation möglichst genau vorherzusagen. Bei Ethylenoxid ist dies besonders interessant, weil experimentelle Arbeiten mit dem Stoff schwierig sind. „Molekulare Methoden funktionieren auch bei extremen Bedingungen, bei Ethylenoxid sind diese zum Beispiel für Sicherheitsstudien wichtig“, erklärt SFB-Sprecher Prof. Hans Hasse. „Die molekularen Simulationen liefern so einen Beitrag, die Produktionsverfahren noch sicherer und effizienter zu machen“.

„Der Preis ist ein großer Erfolg“, so Dr. Jadran Vrabec, der die Arbeitsgruppe Molekulare Thermodynamik am ITT leitet. „Nach einem dritten Platz in der vorletzten Runde und einem zweiten Platz in der letzten Runde der IFPSC haben wir es diesmal geschafft, vor unseren Kollegen aus den USA und China auf dem ersten Platz zu landen.“ Die Stuttgarter Wissenschaftler erreichten 331 von 350 möglichen Punkten. „Damit haben wir in praktisch allen Kategorien die Genauigkeit eines Experiments erreicht. Das zeigt den hohen Entwicklungsstand, den die molekulare Modellierung und Simulation mittlerweile in den Ingenieurwissenschaften erreicht hat“, so Vrabec.

Bernhard Eckl, der auf diesem Gebiet am ITT promoviert, ergänzt: „Die Vorhersagekraft molekularer Methoden hat mich schon immer fasziniert: wenn man die zwischenmolekularen Wechselwirkungen richtig modelliert hat, können alle Stoffeigenschaften vorhergesagt werden.“ Wie gut das mittlerweile klappt, haben die Stuttgarter Wissenschaftler anlässlich der Preisverleihung in Salt Lake City Anfang November gezeigt. Dort war die ganze Breite der industriell interessanten Stoffeigenschaften gefragt: von Dampfdrücken, Dichten und Energien über Transportgrößen wie die Wärmeleitfähigkeit bis hin zur Oberflächenspannung.

Der IFPSC ist ein international ausgeschriebener Wettbewerb, bei dem mit Methoden der molekularen Simulation Eigenschaften industriell wichtiger realer Stoffe berechnet werden. Ausgerichtet wird er von einem Firmenkonsortium in Kooperation mit dem US-amerikanischen National Institute of Standards and Technology sowie dem American Institute of Chemical Engineers (AIChE).

Weitere Informationen bei Prof. Hans Hasse, Institut für Technische Thermodynamik und Thermische Verfahrenstechnik, Tel. 0711/685-66105, e-mail hasse@itt.uni-stuttgart.de sowie bei Dr.-Ing. Jadran Vrabec, Tel. 0711/685-66107, e-mail: vrabec@itt.uni-stuttgart.de

Media Contact

Ursula Zitzler idw

Weitere Informationen:

http://www.itt.uni-stuttgart.de

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer