Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Planck-Forscher beim Descartes-Forschungspreis 2005 erfolgreich

05.12.2005


Europäische Kommission zeichnet im Rahmen europäischer Kooperationen entstandene exzellente Forschungsprojekte aus


Am 2. Dezember ehrt die Europäische Kommission die erfolgreichsten transnationalen europäischen Forschungsprojekte dieses Jahres. Der mit jeweils 200.000 Euro dotierte René Descartes-Forschungspreis geht an insgesamt fünf Vorhaben. Max-Planck-Wissenschaftler sind wesentlich an den beiden Preisträger-Projekten "PULSE - Europäische Pulsar-Forschung" (Max-Planck-Institut für Radioastronomie) und "CECA - Klima- und Umweltveränderungen in der Arktis" (Max-Planck-Institut für Meteorologie) beteiligt. Weitere Preisträger sind die Projekte EURO-PID (Immunologie), EXEL (Materialforschung) und ESS (Sozialwissenschaften). Ein Novum 2005: Auch jene fünf Projekte, die in die Endausscheidung gekommen sind, werden mit jeweils 30.000 Euro geehrt. Darunter befindet sich mit dem H.E.S.S.-Teleskope (High Energy Stereoscopic System) in Namibia ebenfalls ein Projekt mit Max-Planck-Beteiligung. Die feierliche Preisübergabe erfolgt bei der Royal Society in London.

Die diesjährigen fünf Descartes-Forschungspreisträger wurden aus einem breiten Spektrum von Nominierungen aus den Lebenswissenschaften, Ingenieurwissenschaften, Physik, Informatik, Geowissenschaften und Sozialwissenschaften ausgewählt. An zwei der fünf ausgezeichneten Projekte sind Max-Planck-Institute in Deutschland wesentlich beteiligt:


CECA - Climate and Environmental Change in the Arctic

Forschungsgebiet: Umweltwissenschaften

Das CECA-Projekt umfasst eine Anzahl von multidisziplinären Forschungsprojekten, die in den vergangenen zehn Jahren zum Thema "Klima und Umweltveränderungen in der Arktis" durchgeführt wurden.

Die Forschungsarbeiten beschäftigten sich in erster Linie mit der Untersuchung der natürlichen Schwankungen klimatischer Größen in der Arktis. Insbesondere die auffälligen Wärme- und Kälteperioden im letzten Jahrhundert waren Forschungsgegenstand. Es wurden starke Wechselwirkungen zwischen der atmosphärischen Zirkulation und der Eisbedeckung herausgefunden, die ihren Schlüssel in der Barentssee haben. In den Untersuchungen konnte nachgewiesen werden, dass die hohen Temperaturen in den 30er-Jahren auf natürliche Schwankungen, die letzte Erwärmung aber auf anthropogene Ursachen (Emission von Treibhausgasen) zurückgeht. In den letzten fünf Jahren laufen die natürlichen und anthropogenen Ursachen in die gleiche Richtung und verstärken den Effekt der Eisschmelze im Spätsommer: Während 1979 noch 75 Mio. Quadratmeter Eisbedeckung zu finden waren, sind es 2005 im September nur noch ca. 50 Mio. Quadratmeter.

Intensiv gearbeitet wurde im Rahmen von CECA an einer systematischen und integrierten Analyse verschiedener Beobachtungs- und Modelldatensätze, da es nur sehr wenige Beobachtungsdaten in der Arktis gibt.

Die wissenschaftlichen Errungenschaften und Neuerungen aus dem CECA Projekt haben das "state-of-the-art"-Wissen und Verständnis des arktischen Klimasystems und seines Einflusses auf Europa entscheidend vorangebracht.

Projektkoordinierung:

Prof. Ola M. Johannessen, Nansen Environmental and
Remote Sensing Centre (Norwegen), zusammen mit Prof. Lennart Bengtsson,
Max-Planck-Institut für Meteorologie (Deutschland) und Dr. Leonid Bobylev,
Scientific Foundation "Nansen International Environmental and Remote Sensing
Centre" (Russische Förderation)

PULSE - Pulsar Science in Europe: The Impact of European Pulsar Science on Modern Physics

Forschungsgebiet: Physik

Pulsare sind schnell (bis zu 600 mal pro Sekunde) rotierende Neutronensterne, also kompakte, gerade einmal 20 Kilometer große Überreste einer Supernova-Explosion, die dennoch die 1,4-fache Masse unserer Sonne und ein äußerst starkes Magnetfeld besitzen. Aus zwei Regionen über den Magnetpolen senden Pulsare durch einen noch immer nicht komplett verstandenen Mechanismus gebündelte Radiostrahlung aus. Trifft diese bei der Rotation des Pulsars auf die Erde, so empfangen wir regelmäßige Radiopulse. Wegen der großen Trägheit dieser Objekte ist ihre Pulsperiode sehr stabil - Pulsare sind dadurch hochpräzise Uhren in den Tiefen des Weltalls. Die Beobachtung erkennbarer Schwankungen bei den Pulsraten ermöglicht es, die Bewegung von Pulsaren im Weltall genauestens zu verfolgen, aber auch die Eigenschaften superdichter Materie, das Verhalten von Plasma in starken Magnetfeldern und viele andere Extrembedingungen im Universum zu erforschen.

Da die Herstellung und der Einsatz der für die wissenschaftliche Untersuchung dieser Sterne erforderlichen technischen Ausrüstung sehr kostenaufwändig ist, haben Forscher aus ganz Europa das europäische Pulsar-Netzwerk (EPN bzw. PULSE) ins Leben gerufen. Dieses begann mit der Entwicklung eines gemeinsamen Datenformats, damit Daten, die von sehr unterschiedlichen Messgeräten erzeugt werden, miteinander verbunden werden können. Ein erster Erfolg war die zeitgleiche Beobachtung der Radiopulse von Pulsaren an drei europäischen Teleskopen bei drei verschiedenen Wellenlängen. In Gemeinschaftsarbeit mit der Australian Telescope National Facility haben Mitglieder des Netzwerks inzwischen auch neue Instrumente und Computerprogramme erarbeitet, Beobachtungsprogramme koordiniert und eine öffentlich zugängliche Datenbank (http://www.mpifr-bonn.mpg.de/div/pulsar/data/) für den gesamten Rückfluss von Beobachtungsinformationen entwickelt.

850 neue Pulsare wurden im Rahmen dieser Kooperation bisher ausfindig gemacht. Das übertrifft die Anzahl der in den vorher gehenden 30 Jahren insgesamt entdeckten Pulsare bei weitem. Größter Erfolg des Forscherteams ist die Entdeckung des ersten Doppelpulsars. Dass ein derartiges System überhaupt existiert, ist außergewöhnlich, da seine beiden Komponenten eine doppelte Supernova-Explosion überstanden haben müssen.

Mit Pulsaren als Uhren ist es möglich, Veränderungen der Raumzeit zu messen, die durch die Anwesenheit schwerer Körper erzeugt werden. So haben die Forscher bei Pulsarbeobachtungen regelmäßig nachgewiesen, dass enge Doppelneutronenstern-Systeme kräftige Gravitationswellen aussenden.

Das neu entdeckte Doppelpulsar-System hat auch zu einer der glänzendsten Bestätigungen von Einsteins Allgemeiner Relativitätstheorie geführt: In diesem Doppelpulsar-System sind alle Bahnparameter des Orbits direkt astrometrisch bestimmbar - damit liegen die Massen der beiden Pulsare fest. Aber durch die von der Relativitätstheorie vorhergesagten Effekte kann man noch fünf weitere unabhängige Massenbestimmungen vornehmen. Alle ergeben mit großer Präzision das gleiche Resultat. Das aber ist nur möglich, wenn Einsteins Theorie über den Zusammenhang von Raum, Zeit und Materie stimmt.

Projektkoordinierung:

Prof. Andrew Lyne, University of Manchester (Großbritannien), zusammen mit Prof. Nicolo D’amico, INAF Osservatorio Astronomico di Cagliari (Italien), Dr. Axel Jessner, Max-Planck-Institut für Radioastronomie (Deutschland), Dr. Ben Stappers, ASTRON (Niederlande) und Prof. Ioannis Seiradakis, University of Thessaloniki (Griechenland)

Erstmals gibt es in diesem Jahr neben den Preisträgern noch fünf ebenfalls mit einem Preisgeld ausgestattete "Finalisten". Hier sind Max-Planck-Wissenschaftler an einem Projekt beteiligt:

HESS - The HESS Experiment: Revolutionizing the Understanding of the Extreme Universe

Forschungsgebiet: Physik

Die Gamma-Astronomie bei höchsten Energien ist ein ganz junges Forschungsgebiet. Mit den Teleskopen des High Energy Stereoscopic System (H.E.S.S.), dem derzeit weltweit empfindlichsten Nachweisinstrument für hochenergetische Gammastrahlen, wurden zum ersten Mal empfindliche Durchmusterungen des zentralen Teils unserer Milchstraße durchgeführt und dabei viele bis dahin gänzlich unbekannte Gamma-Quellen entdeckt. Diese hochenergetischen Strahlen sind schwer nachzuweisen; selbst von einer starken Quelle trifft nur etwa ein Strahlungsquant pro Monat und Quadratmeter auf unsere Atmosphäre. Die Strahlungsquanten werden in der Erdatmosphäre absorbiert; ihr direkter Nachweis würde daher ein riesiges Satelliteninstrument erfordern.

Deshalb setzen die H.E.S.S.-Teleskope auf einen Trick, um dieses Problem zu umgehen: Sie nutzen die Atmosphäre als Nachweismedium. Werden Gammaquanten absorbiert, senden sie kurze Blitze des so genannten Cherenkov-Lichts aus - ein blaues Leuchten, das nur einige Milliardstel Sekunden andauert. Dieses Leuchten wird mit den großen Spiegeln und empfindlichen Photosensoren der H.E.S.S.-Teleskope aufgefangen. Aus diesen Daten erzeugen die Wissenschaftler dann Bilder astronomischer Objekte im "Licht" hochenergetischer Gammastrahlen.

Die H.E.S.S.-Teleskope wurden über mehrere Jahre hinweg von einem internationalen Team aus über 100 Wissenschaftlern und Ingenieuren aus Deutschland, Frankreich, England, Irland, der Tschechischen Republik, Armenien, Südafrika und Namibia erbaut und in Betrieb genommen. Im September 2004 erfolgte ihre offizielle Einweihung durch den namibischen Premierminister Theo-Ben Gurirab. Schon mit den ersten Daten konnten die Forscher eine Reihe von wichtigen Entdeckungen machen, darunter das erste astronomische Bild einer Supernova-Schockwelle bei allerhöchsten Energien.

Projektkoordinierung:

Prof. Stavros Katsanevas, Centre National de la Recherche Scientifique (Frankreich), zusammen mit Prof. Werner Hofmann, Max-Planck-Institut für Kernphysik (Deutschland), Dr. Michael Punch, Institut National de Physique Nucléaire et de Physique des Particules (Frankreich), Dr. Paula Chadwick, University of Durham (Großbritannien), Prof. Thomas Lohse, Humboldt-Universität zu Berlin (Deutschland), Dr. Philippe Goret, Commissariat à l’Energie Atomique (Frankreich), Prof. Götz Heinzelmann, Universität Hamburg (Deutschland), Prof. Stefan Wagner, Universität Heidelberg (Deutschland), Dr. Hélène Sol, Institut National des Sciences de l’Univers (Frankreich), Prof. Reinhard Schlickeiser, Ruhr-Universität Bochum (Deutschland), Prof. Luke O’Connor Drury, Dublin Institute for Advanced Studies (Irland), Prof. Ladislav Rob, Charles University (Tschechische Republik) und Prof. Ocker Comelis de Jager, North-West University (Südafrika).

Der René Descartes Preise 2005

Der "René-Descartes-Preis für hervorragende wissenschaftliche Forschung" wird von der Europäischen Kommission an Forscherteams vergeben, die im Rahmen europäischer Gemeinschaftsprojekte hervorragende wissenschaftliche oder technologische Ergebnisse und außergewöhnliche Leistungen der Spitzenforschung erzielt haben. Im Unterschied zum Nobelpreis zeichnet diese mit einer Million Euro dotierte europäische Auszeichnung nicht Einzelpersonen, sondern länderübergreifende Forschergruppen aus. Entscheidend ist das Doppelkriterium wissenschaftlicher Exzellenz und Kooperation. Daneben werden seit dem Jahr 2004 auch "vorbildliche Bemühungen im Bereich der Wissenschaftskommunikation" mit dem Descartes-Preis für Wissenschaftskommunikation mit je 50.000 Euro gewürdigt.

Weitere Informationen erhalten Sie von:

Dr. Axel Jessner (zu PULSE)
Max-Planck-Institut für Radioastronomie, Bad Münstereifel
Tel.: +49 2257 301-127
Fax: +49 2257 301-105
E-Mail: jessner@mpifr-bonn.mpg.de

Dr. Annette Kirk (zu CECA)
Max-Planck-Institut für Meteorologie, Hamburg
Tel.: +49 40 41173-374
Fax: +49 40 41173-357
E-Mail: annette.kirk@dkrz.de

Prof. Werner Hofmann (zu HESS)
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-330
Fax: +49 6221 516-603
E-Mail: werner.hofmann@mpi-hd.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Arktis CECA Meteorologie Radioastronomie

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Schönheit der organischen Form in 3D
12.07.2018 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Infektionen und Krebs: Welche Rolle spielen spezielle weiße Blutkörperchen?
06.07.2018 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Europaweit erste Patientin mit neuem Hybridgerät zur Strahlentherapie behandelt

19.07.2018 | Medizintechnik

Waldrand oder mittendrin: Das Erbgut von Mausmakis unterscheidet sich je nach Lebensraum

19.07.2018 | Biowissenschaften Chemie

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics