Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Microbubbles" im Herz

27.01.2005


Mikrobläschen, beladen mit einem Medikament, werden in die Blutbahn injiziert. Am Zielort werden sie mit Ultraschall zerstört, das Medikament wird freigesetzt. Grafik: R. Bekeredjian


Gasbläschen transportieren Gene und Arzneistoffe / BioFuture-Preis für Weiterentwicklung der Ultraschall-Methode wird am 31. Januar 2005 an Dr. Raffi Bekeredjian verliehen

... mehr zu:
»Gen

Für die Behandlung schwerer Herzerkrankungen könnte diese Entwicklung eine Revolution bedeuten: Winzige Gasbläschen, die in die Blutbahn injiziert werden, transportieren Gene oder Arzneimittel ins Herz. Durch Ultraschall werden sie am Zielort zerstört, der Inhalt wird freigesetzt und entfaltet dort seine Wirkung - und das voraussichtlich ohne Nebenwirkungen. Verwendet werden dafür Kontrastmittel für Ultraschalluntersuchungen, die schon lange bei Patienten im Einsatz sind. Nach Einsatz besonders hoher Ultraschallenergie platzen die Bläschen.

Dr. Raffi Bekeredjian hat dieses Verfahren in den letzten Jahren gemeinsam mit Wissenschaftlern der University of Texas entwickelt. Im Sommer 2004 kehrte er zu seiner Arbeitsgruppe in der Medizinischen Universitätsklinik Heidelberg zurück. Dort wird er diese Methode etablieren und bis zur klinischen Anwendung weiterführen - mit Hilfe der ca. 900.000 Euro Fördersumme des BioFuture Preises 2004, der ihm am 31. Januar 2005 vom Bundesministerium für Bildung und Forschung in Berlin verliehen wird.


Drei weitere Preisträger aus der Medizinischen Fakultät Heidelberg

Die Medizinische Fakultät Heidelberg konnte im vergangenen Jahr vier der acht Preisträger des renommierten Preises, der höchstdotierten Fördersumme für Nachwuchsforscher in Deutschland, stellen. Nur selten ist es bislang einem klinisch tätigen Wissenschaftler gelungen, diesen Spitzenpreis für Biotechnologie-Forschung zu erringen.

Dr. Raffi Bekeredjian ist Arzt und wissenschaftlicher Mitarbeiter in der Abteilung Kardiologie, Pulmologie und Angiologie und gehört der Arbeitsgruppe "Experimentelle Echokardiographie" von Professor Dr. Helmut Kücherer, dem Leitenden Oberarzt der Abteilung, an. Das Potenzial der neuen Methode schätzt dieser hoch ein: "Durch die Zerstörung von Ultraschall-Kontrastmitteln im Herzen könnten beispielsweise beim akuten Herzinfarkt hohe Konzentrationen von Medikamenten im Herzmuskel freigesetzt werden", so Professor Kücherer. Die Nebenwirkungen wären gering, da sich der Wirkstoff nicht im gesamten Körper verteilt. Auch bei anderen Erkrankungen, z.B. bösartigen Tumoren, wäre eine Anwendung denkbar.

Ultraschall hat geringe biologische Nebeneffekte

In seinen Arbeiten haben Dr. Bekeredjian und seine amerikanischen Kollegen bereits den Beweis erbracht, dass die Gasbläschen ("microbubbles") tatsächlich als Träger von Genen und Arzneimitteln funktionieren. In der Zeitschrift "Circulation" veröffentlichten sie 2003 Ergebnisse von Tierversuchen, die bewiesen, dass die Mikrobläschen tatsächlich Gene nach Ultraschall-Beschallung fast ausschließlich im Herz freisetzen, die dort dann aktiv werden. Die verwendeten Gene produzierten mehr als vier Tage lang einen "Leuchtstoff" im Herzen, der kaum in anderen Organen zu finden war.

Von den Blasen als Genfähren versprechen sich die Heidelberger Forscher zudem geringere Risiken für den Patienten. Denn die derzeit in Labors und Kliniken getesteten Viren, die als Träger der Gene bei einer Gentherapie verwendet werden sollen, können im Prinzip auch andere Organe und Zellen befallen und dort unerwünschte Reaktionen auslösen. Dass die biologischen Nebeneffekte der Ultraschall-Methode im Herzen selbst nur gering ausfallen, konnten Dr. Bekeredjian und seine Kollegen in Texas in einer zweiten Arbeit zeigen: Mit Hilfe der so genannten Microarray-Technik stellten sie fest, dass sich die Aktivitäten der meisten Gene in den Herzzellen kaum veränderten.

Klinische Studien nach fünfjähriger Forschungszeit geplant

Die "Microbubbles" sind nicht nur Genfähren, sondern auch Medikamenten-Transporter. Dies haben die Wissenschaftler in einer dritten Arbeit beschrieben. In einem Tierversuch zeigten sie, dass ein leuchtender Eiweißstoff mit Hilfe der zerplatzten Bläschen in hoher Konzentration ins Herz eingebracht werden kann.

Herr Dr. Bekeredjian wird sich nun in den nächsten Jahren mit der Optimierung dieser Technik beschäftigen. Ziel ist es, möglichst viele Zellen eines Zielorgans mit den Genträgern zu erreichen, um Herzerkrankungen erfolgreich behandeln zu können. Hierzu sind auch Kooperationen mit weiteren wissenschaftlichen Disziplinen geplant, z.B. der Chemie, Pharmazie und Ultraschallphysik. Am Ende der fünfjährigen Forschungszeit sollen - bei Erfolg - erste klinische Studien begonnen werden. Somit könnte der Weg für eine Anwendung am Patienten gebahnt werden.

Bei Rückfragen:

Dr. Raffi Bekeredjian
Telefon: 06221 / 56 39 097
E-Mail: Raffi.Bekeredjian@med.uni-heidelberg.de

Literatur zu Forschungsarbeiten von Dr. Bekeredjian:
(1) R. Bekeredjian et. al.: Effects of ultrasound-targeted microbubble destruction on cardiac gene expression. Ultrasound in Medicine & Biology, Volume 30,Issue 4,Pages 539-543.
(2) R. Bekeredjian et. al.: Ultrasound-Targeted Microbubble Destruction Can Repeatedly Direct Highly Specific Plasmid Expression to the Heart. Circulation. 2003;108:1022.

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.med.uni-heidelberg.de
http://www.med.uni-heidelberg.de/aktuelles/

Weitere Berichte zu: Gen

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Schönheit der organischen Form in 3D
12.07.2018 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Infektionen und Krebs: Welche Rolle spielen spezielle weiße Blutkörperchen?
06.07.2018 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics