Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

400.000 Euro für Grundlagenforschung an der Universität Hannover

12.11.2003


Die VW-Stiftung unterstützt das Projekt "Synthese und Eigenschaften neuartiger dreidimensionaler Einzelmoleküle für die molekulare Elektronik" mit rund 400.000 Euro.


Kleiner, schneller, leistungsfähiger - diesem Credo der Mikroelektronik hat die Natur Schranken gesetzt. Schon im Nanometerbereich, in dem sich das Geschehen auf modernen Computerchips bereits abspielt, einzelne Ionen unter dem Einfluss des Elektronenimpulses von ihren Plätzen im Gitternetz lösen und zu wandern beginnen. Mit abnehmender Größe werden deshalb Funktionsschichten und Leiterbahnen immer unzuverlässiger.

Untersuchungen der Einsatzmöglichkeiten von Molekülen als den kleinstmöglichen Strukturen in der Nanoelektronik, die als Ziel auch die Nutzung quantenmechanischer Effekte und weiterer molekülspezifischer Eigenschaften einschließen, haben sich Wissenschaftler aus vier Instituten der Uni Hannover und der TU Braunschweig zur Aufgabe gemacht. Damit vollziehen sie eine radikale Abkehr von der Entwicklung immer kleinerer Formationen aus den bisher für größere Strukturen bekannten Verfahren. Ihr Projekt "Synthese und Eigenschaften neuartiger dreidimensionaler Einzelmoleküle für die molekulare Elektronik" wird von der VW-Stiftung mit rund 400.000 Euro unterstützt. Das Projekt hat eine Laufzeit von drei Jahren.


"Das ist zunächst reine Grundlagenforschung", erklärt Herbert Pfnür, Professor am Institut für Festkörperphysik der Uni Hannover. "Die bisherigen Methoden lassen sich nicht bis in diese Größenbereiche weiterentwickeln, also müssen wir etwas Neues ausprobieren." Und so haben sich die beteiligten Wissenschaftler vor allem vorgenommen, die Möglichkeiten, die Moleküle bieten, zu untersuchen. Während die Chemiker für die "Zucht" geeigneter Moleküle zuständig sind, sollen die Physiker zum einen eine Umgebung für die Moleküle entwickeln, in denen Versuche in dieser Größenordnung überhaupt möglich sind und zum anderen die Eigenschaften der Moleküle messen. Die Elektrotechniker schließlich vollziehen den dritten Schritt und entwickeln Möglichkeiten, wie tatsächlich eine molekulare Schaltung aufgebaut werden kann.

Schon den Physikern stellen sich zahllose Fragen in diesem wissenschaftlichen Neuland. Wie kann beispielsweise eine Schnittstelle zwischen Molekülen aussehen? Wie verändern sich Eigenschaften, etwa die Leitungsfähigkeit, wenn Moleküle gestreckt werden? "Kleine Strukturen kontrolliert aufzubauen, Verfahren zu entwickeln, um in komplexen Zusammenhängen elektrische Eigenschaften zu entwickeln und dabei herauszufinden, was diese maßgeblich beeinflusst, ist die größte Herausforderung", sagt Pfnür.

Dr. Stefanie Beier | idw
Weitere Informationen:
http://www.volkswagen-stiftung.de
http://www.fkp.uni-hannover.de

Weitere Berichte zu: Einzelmolekül Elektronik Grundlagenforschung Molekül

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Künstliche Intelligenz erobert die Fahrzeugentwicklung
21.09.2018 | Technische Universität Berlin

nachricht Preis für Arbeit über autonomes Fahren
11.09.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics