Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

571.000 Euro für ein Projekt zur Entwicklung neuer Röntgenoptiken

09.07.2003


Die VolkswagenStiftung stellt einem Wissenschaftlerteam um Professor Dr. Ulrich Heinzmann vom Lehrstuhl für Molekül- und Oberflächenphysik der Universität Bielefeld 571.000 Euro zur Verfügung für ein Projekt, das ein neues Verfahren zur Herstellung von Röntgenoptiken zum Ziel hat. Die Verfügbarkeit solcher Röntgenoptiken ist eine unabdingbare Voraussetzung für Grundlagenforschung im Attosekundenbereich (10-18 Sekunden).



"Attosekundenbereich" - oder eben "10 hoch minus 18 Sekunden": Verglichen mit dieser ultrakurzen Zeitspanne dauert der berüchtigte Wimpernschlag geradezu eine Ewigkeit. Was aber lässt sich in dieser Dimension erforschen? Die Wissenschaftler interessieren sich insbesondere für Folgendes: Mit den zu entwickelnden Röntgenoptiken wollen sie in Zusammenarbeit mit Professor Dr. Ferenc Krausz vom Max-Planck-Institut für Quantenoptik in Garching die Dynamik der Elektronenbewegung in atomaren und molekularen Systemen zeitaufgelöst verfolgen. Ähnlich wie vor 125 Jahren Eadweard J. Muybridge über die sequenzielle Auslösung von Kameras die alte Frage beantworten konnte, ob ein Pferd im Galopp jemals alle Hufe vom Boden hebt - was übrigens stimmt, wohingegen ein Elefant dies nicht zu tun vermag -, erwarten die Wissenschaftler mit den ultrakurzen Lichtpulsen Schnappschüsse der Elektronenbewegung aufnehmen zu können und damit offene Fragen zu erforschen.



Es geht also zunächst einmal darum, die entsprechenden Röntgenoptiken herzustellen - angefangen beim richtigen Design über Entwicklung, Herstellung und Charakterisierung bis hin schließlich zum Einsatz dieser Röntgenoptiken. Eine zentrale Herausforderung für die Erzeugung der Attosekundenpulse liegt darin, dass völlig neuartige Spiegel vonnöten sind, die die einzelnen Farbkomponenten eines Pulses effizient reflektieren. Die Lösung könnte sein, Spiegel herzustellen aus Stapeln von Schichten wechselnder Materialien mit einer jeweiligen Einzelschichtdicke von circa 1 Nanometer, Grenzflächengenauigkeiten von etwa 0,1 Nanometer und Wellenfrontgenauigkeiten von circa 1 Nanometer.

Spätestens jetzt wird deutlich: Die Stiftung fördert ein überaus interessantes Vorhaben auf einem Gebiet, das noch neu und wenig erforscht, zugleich aus technischer Sicht mit einer Fülle von Herausforderungen gespickt ist. Weltweit gibt es nur eine Hand voll Gruppen, die sich in diesem Feld bewegen. Die Bielefelder Wissenschaftler selbst waren es, die in jüngster Zeit entsprechende Pionierarbeit geleistet haben: 2001 und 2002 wurden erste Arbeiten in renommierten Fachzeitschriften veröffentlicht (vgl. Science 297 vom 16. August 2002 und Nature 419 vom 24. Oktober 2002). Die Mittel der Stiftung dienen - neben der Finanzierung der Wissenschaftlerstellen - vor allem dazu, das für die Forschung dringend benötigte "gepulste Hochleistungslasersystem" zu beschaffen.

Kontakte:

VolkswagenStiftung, Presse- und Öffentlichkeitsarbeit
Dr. Christian Jung, E-Mail: jung@volkswagenstiftung.de
Telefon: 0511 - 8381-380

VolkswagenStiftung, Förderprojekt
Dr. Ulrike Bischler, E-Mail: bischler@volkswagenstiftung.de
Telefon: 0511 - 8381-350

Universität Bielefeld
Prof. Dr. Ulrich Heinzmann
Lehrstuhl für Molekül- und Oberflächenphysik
E-Mail: uheinzm@physik.uni-bielefeld.de
Telefon: 0521 - 106-5469

Dr. Christian Jung | idw
Weitere Informationen:
http://www.volkswagenstiftung.de

Weitere Berichte zu: Elektronenbewegung Molekül Nanometer Röntgenoptik

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht dormakaba mit 4 Architects' Darling in Gold ausgezeichnet
13.11.2019 | dormakaba Deutschland GmbH

nachricht Gemeinsam siegen: Gold für Innovo Cloud und Rittal bei den IT-Awards
08.11.2019 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Erkundungsmethode für die Geothermie

14.11.2019 | Geowissenschaften

Schmieden statt Schweißen: Stoffschlüssige Verbindung durch Umformen

14.11.2019 | Maschinenbau

Neuer Ansatz zur Parkinson-Therapie?

14.11.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics