Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Daten abhörsicher übertragen: Philip Morris Forschungspreis 2003 für LMU-Physiker Harald Weinfurter

04.06.2003


Professor Dr. Harald Weinfurter und sein Mitarbeiter Dr. Christian Kurtsiefer werden heute, Dienstag, 4. Juni, mit dem Philip Morris Forschungspreis 2003 für ihre Arbeit in der Quantenkryptographie ausgezeichnet. Der mit 100.000 Euro dotierte Preis zählt zu den renommiertesten Auszeichnungen für Wissenschaftler in Deutschland und wird jährlich vergeben. Heuer sind vier Forscher und Forscherteams aus München, Hamburg, Garching und Saarbrücken die Preisträger..

... mehr zu:
»Photon

Der Österreicher Professor Weinfurter (42) studierte an der TU Wien technische Physik und habilitierte 1996 an der Universität Innsbruck in Experimentalphysik. Seit 1999 ist er Professor für Quantenoptik an der Sektion Physik der Ludwig-Maximilians-Universität München. Sein Kollege Dr. Christian Kurtsiefer (35) studierte von 1987 bis 1992 Physik an der Universität Konstanz und promovierte dort 1997. Er arbeitet seit 1999 als wissenschaftlicher Mitarbeiter an der LMU.

Einen Weltrekord haben Professor Weinfurter und Dr. Kurtsiefer aufgestellt, als die Wissenschaftler zwischen den Gipfeln von Zugspitze und Karwendel in Zusammenarbeit mit Mitarbeitern einer britischen Firma Nachrichten abhörsicher über eine Distanz von 23,4 Kilometern übertragen haben.


Gesendet wurden in den Versuchen allerdings nicht codierte Botschaften, sondern die Schlüssel zu ihrer Decodierung. Übertragen werden kleinste Lichtpartikel, die Photonen. Sie werden polarisiert, also mit einer bestimmten messbaren Eigenschaft versehen, ausgestrahlt. Abhörsicher ist das System, weil eine Messung der Photonen während der Übertragung deren Eigenschaften verändert, was der legitime Empfänger dann zweifelsfrei feststellen kann. Die sichere Übertragung sensibler Daten spielt unter anderem bei Finanzgeschäften, aber auch firmeninternen Mitteilungen eine große Rolle. "Unser nächster Schritt wird die Entwicklung von Systemen zur sicheren Kommunikation im innerstädtischen Bereich sein", sagt Projektleiter Prof. Harald Weinfurter.

Der Schlüssel ist der Schlüssel: Die Schwachstelle bei der Übermittlung geheimer Botschaften ist nicht unbedingt die Nachricht selbst, sondern der Schlüssel zu ihrer Decodierung. Heutzutage ist die Entschlüsselung vieler geheimer Nachrichten nur mit Hilfe so komplexer Algorithmen möglich, dass unbefugte Dritte an dem extrem hohen Aufwand scheitern. Die ständige Weiterentwicklung moderner Technik und die mögliche Formulierung neuer mathematischer Sätze sind eine permanente Gefahr für diese Art der Codierung. In anderen Fällen bringt ein Bote den Schlüssel an seinen Bestimmungsort, was ebenfalls Risiken birgt. So kann etwa der Bote selbst bestechlich sein. Oft ist auch für die Übermittlung ein weiter Weg zurückzulegen, was den Zugriff Dritter erleichtert.

Vor allem aber ist der Schlüssel nach dieser herkömmlichen Art nicht mit einem "Kopierschutz" ausgestattet. Fällt er in fremde Hände und wird übernommen, verändert er sich nicht, so dass dieser Eingriff dem Empfänger nicht unbedingt auffallen wird. Dies ist anders bei dem neuen System der Quanten-Kryptographie. Dabei werden Photonen, also kleinste Bestandteile des Lichts, übertragen. Der Sender verleiht ihnen bestimmte Eigenschaften, indem er sie polarisiert. Die einzelnen Grade der Polarisierung stehen für eine der beiden Einheiten des binären Codes, 0 und 1. Der Sender polarisiert die Photonen entsprechend der Sequenz des Schlüssels, der Empfänger kann diesen Schritt umkehren und so die Schlüsselsequenz zusammensetzen. Werden die Photonen auf dem Weg zum Empfänger abgefangen und gemessen, verändert sich ihre Polarisierung, was dem Empfänger auffällt. Wichtig ist deshalb, dass immer nur ein Photon, und nicht beispielsweise zwei Photonen auf einmal übertragen werden. Unbefugte Dritte könnten sonst eines der beiden Lichtquanten abfangen und messen, das zweite aber unverändert an den Empfänger weiterschicken.

Ihre Versuche führten die Wissenschaftler von der Münchner Gruppe in den Bergen durch, um Störungen durch Luftturbulenzen zu vermeiden. Zu Beginn werden die beiden Geräte, der Sender auf der Zugspitze und der Empfänger auf der Karwendelspitze, per Laserstrahl genau aufeinander ausgerichtet. Das von den Forschern entwickelte und patentierte Sendegerät polarisiert die Photonen, bevor sie ausgesandt werden, entsprechend dem vorliegenden und zu übertragenden Schlüssel. Der Empfänger registriert dann nicht nur die verschiedenen Grade der Polarisierung, sondern auch die genaue Zeit, zu der die einzelnen Signale eintreffen. Über eine herkömmliche Telefonleitung verständigen sich dann Sender und Empfänger. Sie vergleichen die Sende- und Empfangszeiten und klären auch, welche Signale bei der Übertragung verloren gegangen sind. Der Sender kann diese dann aus seinem Schlüssel streichen, so dass seine Sequenz mit der des Empfängers übereinstimmt.


Abhörversuche verändern bei mindestens einem Viertel der Photonen ihre Polarisierung und damit die Codierung. Empfänger und Sender vergleichen deshalb am Telefon einen kurzen Abschnitt aus ihren jeweiligen Schlüsselsequenzen. Bei einer hohen Übereinstimmung kann ein Abhörversuch ausgeschlossen werden. Die Übertragung der einzelnen Photonen erfolgt in Sekundenbruchteilen. "Wir sind mit diesen Experimenten dem Ziel einer abhörsicheren Schlüsselübertragung an erdnahe Satelliten sehr viel näher gekommen", so Dr. Kurtsiefer.

Mittlerweile wird die Technik auch in München erprobt. Die Wissenschaftler bauen seit dem Frühjahr zwischen Amalien- und Theresienstraße eine Teststrecke mit fest montierten Teleskopen. "Bisher haben wir aber noch keinen Schlüssel ausgetauscht", sagt Harald Weinfurter. Dennoch: Das Experiment läuft weiter. (suwe/zis)


Ansprechpartner:
Prof. Dr. Harald Weinfurter, Sektion für Physik
Tel. +49-89-2180-2044
E-Mail: harald.weinfurter@physik.uni-muenchen.de

oder Dr. Christian Kurtsiefer, Sektion für Physik
Tel. +49-89-2180-3942
E-Mail: christian.kurtsiefer@physik.uni-muenchen.de

Cornelia Glees-zur Bonsen | idw
Weitere Informationen:
http://scotty.quantum.physik.uni-muenchen.de/people/weinfurter/quinfo/bewerbung.pdf
http://scotty.quantum.physik.uni-muenchen.de/people/weinfurter/quinfo/lebenslaeufe.pdf

Weitere Berichte zu: Photon

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Innovative Werkstoffe für Rotorblätter
26.03.2019 | Leibniz Universität Hannover

nachricht Haensel AMS und Universität Amsterdam starten Innovationswettbewerb für Dynamic Pricing
21.03.2019 | Haensel AMS GmbH

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Saxony5 und Industrie 4.0 Modellfabrik präsentieren sich auf Hannover Messe

Vom 1. bis 4. April 2019 ist die HTW Dresden mit der Industrie 4.0 Modellfabrik und dem Projekt Saxony5 auf der Hannover Messe vertreten. Am Gemeinschaftstand der sächsischen Hochschulen für angewandte Forschung (HAW) „Forschung für die Zukunft“ stellen die Dresdner Forscher aktuelle Projekte zum kollaborativen Arbeiten und deren Anwendungen in der Industrie vor.

Virtuell können die Besucher von Hannover aus auf dem Tablet ihre Züge gegen den kollaborativen Roboter YuMi, der in der Modellfabrik in Dresden steht, setzen....

Im Focus: Hochdruckwasserstrahlen zum flächigen Materialabtrag von hochfesten Werkstoffen erprobt

Beim Fräsen hochfester Werkstoffe wie Oxidkeramik oder Sondermetalle – und besonders bei der Schruppbearbeitung – verschleißen Werkzeuge schnell. Für Unternehmen ist die Bearbeitung dieser Werkstoffe deshalb mit hohen Kosten verbunden. Im Projekt »HydroMill« hat das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen mit seinen Projektpartnern nun gezeigt, dass sich der Hochdruckwasserstrahl zum flächigen Materialabtrag von hochfesten Werkstoffen eignet. War der Einsatz von Wasserstrahlen bislang auf die Schneidbearbeitung beschränkt, zeigen die Projektergebnisse, wie sich hochfeste Werkstoffe kosten- und ressourcenschonender als bisher flächig abtragen lassen.

Diese neue und zur konventionellen Schruppbearbeitung alternative Anwendung der Wasserstrahlbearbeitung untersuchten die Aachener Ingenieure gemeinsam mit...

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Saxony5 und Industrie 4.0 Modellfabrik präsentieren sich auf Hannover Messe

26.03.2019 | HANNOVER MESSE

Laserbearbeitung ist Kopfsache – LZH auf der Hannover Messe 2019

26.03.2019 | HANNOVER MESSE

3D-Druck im Prismaformat

26.03.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics