Forscher verwandeln industrielle Reststoffe in wertvolles Biogas

Großer Erfolg für die Technische Universität München: Ein Forscherteam ihres Wissenschaftszentrums Weihenstephan hat gestern den E.ON Bayern Umweltpreis 2008 bekommen. Mit 50.000 Euro ausgezeichnet wurde ihr innovatives Verfahren, Reststoffe der Getränke- und Lebensmittelindustrie umweltschonend in Energie umzuwandeln. Die Entwicklung der TU-Forscher ist somit ein doppelter Gewinn – für die Natur wie für die Wirtschaft.

Ein Forscherteam der Technischen Universität München (TUM) darf feiern: Der bayerische Umweltminister Dr. Otmar Bernhard zeichnete es heute Abend zusammen mit E.ON-Vorstandsmitglied Dr. Stefan Vogg mit dem E.ON Bayern Umweltpreis 2008 aus. Der Hauptpreis ist mit 50.000 Euro dotiert und wird den TUM-Forschern in der Allerheiligen-Hofkirche der Münchner Residenz verliehen.

Entgegengenommen wurde er durch Professor Karl Sommer und Dr. Jens Voigt vom Lehrstuhl für Maschinen- und Apparatekunde in Weihenstephan sowie von Professor Martin Faulstich und Dr. Doris Schieder vom Lehrstuhl für Rohstoff- und Energietechnologie in Straubing. Der E.ON Bayern Umweltpreis gehört zu den wichtigsten Auszeichnungen für ökologisches Handeln in Deutschland und fördert mit einer jährlichen Gesamtsumme von 250.000 Euro energiesparende und umweltschonende Projekte.

Das Team, das in Weihenstephan und Straubing an der TU München forscht, überzeugte die Jury mit einer bestechenden Idee: Aus Brauereirückständen, Mälzerei- und Mühlenabfällen saubere Bioenergie erzeugen. Auf diese Weise kann die Lebensmittel- und Getränkeindustrie ihre biogenen Reststoffe wie Körnerspelzen, Biertreber und Malzreste in Zukunft gewinnbringend verwerten, anstatt sie wie bisher aufwändig als eher unbeliebtes Rinderfutter zu entsorgen. Gleichzeitig profitiert die Umwelt: Denn mit dem neuen Verfahren kann Bioenergie erzeugt werden, ohne dass dafür Energiepflanzen angebaut werden, die Feldfläche für Nahrungsmittel in Anspruch nehmen.

Die TUM-Forscher haben zunächst auf ein bewährtes Verfahren zurückgegriffen: die Biogasherstellung. Normalerweise werden dabei extra angebaute Pflanzen in einem Gärbehälter durch die dort vorhandenen Mikroorganismen in Fäulnisgase umgewandelt. Wenn man in bisherige Anlagen Biertreber, Malzreste und Körnerspelzen einfüllt, können die Bakterien diese Rohstoffe nicht – oder nur viel zu langsam – verarbeiten. Die findigen Wissenschaftler gingen dieses Problem auf zwei Wegen an: Der Straubinger Lehrstuhl für Rohstoff- und Energietechnologie entwickelte ganz gezielt einen Mix an Mikroorganismen, der biogene Reststoffe aus Brauerei und Mühle besonders gut „verdaut“.

Die Weihenstephaner Kollegen vom Lehrstuhl für Maschinen- und Apparatekunde schauten sich in der Zwischenzeit die verarbeitende Mechanik beim Pflanzenfresser Rind ab. „Die Kuh kaut ihr Futter vor dem Verdauen und käut dann noch einmal wieder,“ erläutert Dr. Jens Voigt, einer der Projektleiter. „Also dachten wir: Auch wir müssen das verwendete Substrat zerkleinern und in mehreren Stufen arbeiten, damit der Gärprozess intensiver wird.“ Die Verfahrenstechniker haben die industriellen Reststoffe in Spezialmühlen auf eine Größe von 10 mm zermahlen, ein einzelnes Körnchen ist damit nur noch ein hundertstel Millimeter groß. Durch diese Aufbereitung beschleunigt sich – im Zusammenspiel mit den Straubinger Spezialbakterien – der gesamte Gärprozess.

Das Ergebnis dieser standortübergreifenden Zusammenarbeit an der TUM: Eine deutlich schnellere Erzeugung von Biogas als bisher – und dabei gleichzeitig eine verbesserte Methanausbeute. Das erzeugte Biogas kann als Brennstoff direkt im Kessel oder in einem Blockheizkraftwerk eingesetzt werden, mit den Überbleibseln der vergorenen Reststoffe könnte man sogar noch die Felder düngen. Diese elegante Methode zur Verwertung biogener industrieller Reststoffe funktioniert bisher allerdings nur in der Pilotanlage, die 100 Liter fasst. Bevor das Verfahren in Serie gehen kann, möchten die Forscher noch den Wirkungsgrad verbessern, auch die Auslegungsparameter für großtechnische Anlagen mit kurzer Verweilzeit fehlen noch. Die Industrie hat aber bereits großes Interesse signalisiert – und wartet auf den ersten großen Prototypen.

Kontakt:
Prof. Dr.-Ing. Karl Sommer / Dr. Jens Voigt
Technische Universität München, Lehrstuhl für Maschinen- und Apparatekunde
85354 Freising-Weihenstephan
Tel. 08161 / 71-3179
j.voigt@lrz.tum.de
Prof. Dr.-Ing. Martin Faulstich / Dr. Doris Schieder
Technische Universität München, Lehrstuhl für Rohstoff- und Energietechnologie
94315 Straubing
Tel. 09421 / 187 108
doris.schieder@wzw.tum.de
Hintergrund:
Das Projekt wurde durch die Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) und den Forschungskreis Ernährungsindustrie (FEI) unter der Projektnummer 14498 gefördert. Im Projekt begleitenden Ausschuss finden sich namhafte Vertreter der beteiligten Industrieverbände Wissenschaftsförderung der Deutschen Brauwirtschaft (Wifö), des Deutschen Mälzerbundes und des Deutschen Mühlenverbandes.

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer