Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Acht Millionen Euro für die Forschung: Smarte Implantate sollen Knochen besser heilen

10.12.2019

Ein intelligentes Implantat soll bei Knochenbrüchen sofort ab der OP die Heilung überwachen und bei Fehlbelastung warnen. Es soll selbst aktiv durch Bewegungen gegensteuern, wenn nicht zusammenwächst, was zusammengehört: Das ist das Ziel einer Forschergruppe der Universität des Saarlandes unter Leitung des Unfallchirurgen Tim Pohlemann. Die Mediziner, Materialforscher, Ingenieure und Informatiker forschen daran, Patienten individuelle Implantate auf den Knochen maßzuschneidern. Neuartige Materialien sollen dabei komplizierte Brüche schneller und besser heilen lassen. Die Werner Siemens-Stiftung investiert acht Millionen Euro in diese Forschung.

Knochenbrüche sind schmerzhaft und meist eine langwierige Sache. Gerade Unterschenkel- und Trümmerfrakturen, oft Folge eines Autounfalls, machen den Betroffenen lange zu schaffen. „Nach der Operation, bei der die Bruchstücke mit einer Schiene verschraubt werden, wissen wir heute lange Zeit nur wenig über den Verlauf der Heilung.


Professor Tim Pohlemann will mit einem Team aus Medizinern, Materialforschern, Ingenieuren und Informatikern der Universität des Saarlandes die Therapie komplizierter Knochenbrüche revolutionieren.

Foto: Oliver Dietze

Wir können auch nicht aktiv eingreifen. Erst nach Wochen gibt ein Röntgenbild Einblick, ob der Knochen gut verheilt und ob sich neues Knochengewebe gebildet hat“, erklärt Professor Tim Pohlemann, Direktor der Klinik für Unfall-, Hand- und Wiederherstellungschirurgie des Universitätsklinikums des Saarlandes.

Zusammen mit Wissenschaftlerinnen und Wissenschaftlern verschiedener Disziplinen will das Team um Professor Pohlemann an der Universität des Saarlandes die Therapie solch komplizierter Knochenbrüche revolutionieren:

Dies soll den Patienten schneller wieder auf die Beine helfen und zugleich die Behandlungskosten senken. „Neben den Schmerzen und den massiven Einschränkungen, die ein solcher Bruch mit sich bringt, kann die Therapie im ungünstigen Fall schnell Kosten in sechsstelliger Höhe verursachen“, erklärt Pohlemann.

Die neuartige Idee: Ein speziell auf die einzelnen Patienten zugeschnittenes Implantat soll nach der Operation ohne Weiteres automatisch Informationen darüber liefern, wie die Bruchstelle verheilt, und außerdem gezielt und aktiv die Knochenheilung positiv beeinflussen, indem es sich von selbst nach Bedarf bewegt oder versteift.

„Wir haben in Vorstudien herausgefunden, dass Frakturen schneller heilen, wenn die Bruchstelle durch Bewegung stimuliert wird. Unsere Vision ist – salopp gesagt – ein Implantat, das Tag und Nacht die optimale Krankengymnastik macht und so den Knochen schneller und besser heilen lässt“, erklärt Tim Pohlemann.

Auch soll das Implantat warnen, wenn etwa der Knochen zu stark belastet wird. Das Team um Professor Pohlemann arbeitet hierfür an der Universität des Saarlandes eng zusammen mit dem Ingenieur Professor Stefan Diebels und dessen Arbeitsgruppe auf dem Gebiet der Technischen Mechanik, mit dem Informatiker Professor Philipp Slusallek und seinem Team an Uni und am Deutschen Forschungszentrum für Künstliche Intelligenz (DFKI) sowie mit den Spezialistinnen und Spezialisten für intelligente Materialsysteme um Professor Stefan Seelecke an Uni und Zentrum für Mechatronik und Automatisierungstechnik (ZeMA).

In spätestens fünf Jahren soll ein Implantat-Prototyp entwickelt sein. Hierzu kombinieren die Wissenschaftlerinnen und Wissenschaftler modernste Materialtechnik, Künstliche Intelligenz und medizinisches Know-how. Unterschenkelfrakturen, als bekannt komplexe Verletzung, dienen als Versuchsfall.

Bereits seit Langem arbeiten die Wissenschaftlerinnen und Wissenschaftler daran, herauszufinden, wie genau sich nach einer Fraktur die Belastung beim Gehen auf die Heilung auswirkt. So erfassen sie mit Sensor-Einlegesohlen über lange Zeit bei jedem Schritt von Patientinnen und Patienten 60 verschiedene Parameter.

In langen Versuchsreihen sammeln sie Daten von Knochen, die erst gebrochen und dann vielfältig belastet werden. Sie werten unzählige Computertomographien aus.

Vor allem, was bei Belastung im Frakturspalt passiert, interessiert die Forscher. „Wenn wir wissen, wie die Lastverteilung im spezifischen Bruch sein wird, welche Kräfte hier wirken, können wir berechnen, wie das Implantat für die individuelle Frakturgeometrie aussehen muss, oder auch, wie viele Schrauben tatsächlich an welcher Stelle notwendig sind“, erläutert Professor Stefan Diebels.

Mit Methoden Künstlicher Intelligenz und maschinellen Lernens erstellen sie aus den so gewonnenen Daten Belastungsmuster, anhand derer sie Rückschlüsse auf Heilung oder Störungen ziehen können. „Ziel ist es, die individuelle Fraktur berechenbar zu machen und die optimale Therapie für jeden Patienten und jede Patientin zu ermöglichen“, formuliert Professor Philipp Slusallek die Vision des Projektes.

Professor Stefan Seelecke und sein Team arbeiten daran, die Implantate aus dem intelligenten Material Nickel-Titan, auch Nitinol genannt, herzustellen: Haarfeine Drähte aus dieser für den Körper ungefährlichen Legierung werden auch künstliche Muskeln genannt und können sich mithilfe elektrischer Signale exakt bewegen.

„Von allen Antriebsmechanismen haben diese Muskeldrähte die höchste Energiedichte und können auf kleinem Raum kraftvolle Bewegungen ausführen“, erläutert Seelecke. Sensoreigenschaften sind mit ihnen automatisch integriert. „Die Drähte liefern alle Daten. Mit ihren sensorischen Eigenschaften können wir sie einsetzen, um die Bruchstelle gezielt, autonom und smart durch Bewegung zu stimulieren.“

Die Werner Siemens-Stiftung fördert diese Forschungen jetzt mit acht Millionen Euro.

„Diese Nachricht freut uns an der Universität des Saarlandes außerordentlich. Das Projekt hat Vorzeige- und Vorbildcharakter für eine großartige interdisziplinäre und fachübergreifende Initiative. Von den Erkenntnissen dieses für die Wissenschaft eminent wichtigen und innovativen Verbundforschungsprojekts werden in Zukunft hoffentlich viele Patientinnen und Patienten profitieren können“, sagt Universitätspräsident Manfred Schmitt.

Die Werner Siemens-Stiftung finanziert die Startphase herausragender, innovativer, technischer und naturwissenschaftlicher Projekte – mit dem Ziel, dass die angeschobenen Projekte nach ein paar Jahren eigenständig weiterlaufen oder die daraus resultierenden Innovationen industriell genutzt werden.

Gemeinsame Pressemitteilung von Werner Siemens-Stiftung und Universität des Saarlandes

https://www.wernersiemens-stiftung.ch/

Kontakt:
Prof. Dr. Tim Pohlemann, Tel.: +49 – (0) 68 41 – 16 – 3 15 02,
E-Mail: tim.pohlemann@uks.eu

Weitere Pressefotos zum Download zur honorarfreien Verwendung in Zusammenhang mit dieser Pressemitteilung finden Sie unter https://www.uni-saarland.de/universitaet/aktuell/artikel/nr/21365.html

Wissenschaftliche Ansprechpartner:

Kontakt: Prof. Dr. Tim Pohlemann, Tel.: +49 – (0) 68 41 – 16 – 3 15 02,
E-Mail: tim.pohlemann@uks.eu

Claudia Ehrlich | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Wie aus Erfindungen Innovationen werden: HZDR-Innovationsfonds fördert erfolgreich Technologietransferprojekte
09.07.2020 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Einstieg in die Nanowelt
22.06.2020 | Hochschule Aalen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Im Focus: Robuste Materialien in Schwingung versetzt

Kieler Physikteam beobachtet in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse

In der Physik werden sie zurzeit intensiv erforscht, in der Elektronik könnten sie ganz neue Funktionen ermöglichen: Sogenannte topologische Materialien...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

09.07.2020 | Physik Astronomie

Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen

09.07.2020 | Biowissenschaften Chemie

Selbstadaptive Systeme: KI übernimmt Arbeit von Software-Ingenieuren

09.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics