Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wirtschaftliches Herstellungsverfahren und homogene Leuchtkraft für OLEDs dank mikroskaliger Leiterbahnen

18.11.2009
Der Trend in der Beleuchtungstechnik geht zur flächigen und dekorativen Beleuchtung, wie sie durch organische Leuchtdioden, kurz OLEDs, erreicht werden kann.

Analysten von NanoMarkets prognostizieren für 2012 ein weltweites Marktvolumen von über 2,9 Mrd. US $, bis 2014 sollen diese Umsätze auf rund 5,9 Mrd. US $ steigen.

Die Beleuchtungsindustrie sucht nun nach wirtschaftlichen Herstellungsverfahren für organische Leuchtmittel. In Zusammenarbeit mit Philips entwickelt das Fraunhofer-Institut für Lasertechnik ILT ein innovatives, kosteneffizientes Verfahren zur Aufbringung von Leiterbahnen auf OLEDs.

OLEDs (organic light emitting diodes) sind hocheffiziente Lichtquellen auf Basis organischer Materialien, die bei geringem Energieverbrauch eine hohe Lichtstärke erzielen können. Sie bestehen aus einer oder mehreren aktiven Organikschichten, die über zwei flächige Elektroden unter Spannung gesetzt werden. Der initiierte Stomfluss führt zu Elektronen-Loch-Rekombinationen in der Organikschicht. Dadurch werden Photonen erzeugt, die durch die leitfähige, transparente Anode - bestehend aus Indiumzinnoxid (ITO) oder ähnlichen Materialien - in den Halbraum strahlen.

Zur gleichmäßigen Verteilung der elektrischen Energie über die gesamte Fläche der OLEDs werden Leiterbahnen aus Metall auf die ITO-Schicht aufgetragen. Die Strukturgröße der Leiterbahnen spielt hierbei eine wichtige Rolle: Sind die Bahnen zu breit, können sie das homogene Leuchtbild der Lichtquelle beeinträchtigen. Neben der angestrebten Senkung der Herstellungskosten für OLEDs verfolgt die Beleuchtungsindustrie die Erzeugung kleinster Strukturen mit großem Interesse. Gefordert ist nun ein Verfahren, mit dem schmale metallische Leiterbahnen energie- und ressourceneffizient erzeugt werden können.

Bislang wurde das metallische Leitermaterial mithilfe eines energieintensiven Hochvakuum-Sputterprozesses auf die Oberfläche der OLEDs aufgebracht. Dabei wurde eine atomare Schicht unter Hochvakuum flächendeckend auf das Substrat gestäubt und mit einem fotolithografischen Verfahren genau dort wieder entfernt, wo keine Leiterbahnen entstehen sollten. Dieser subtraktive Prozess ist aufgrund des hohen Aufwands beim Beschichten und anschließenden Entfernen der überschüssigen Metallschicht sowie wegen des Materialverlusts von bis zu 90% sehr teuer. Zudem ist der fotolithografische Abtrag umweltschädlich, da die mit Metallen durchsetzte Ätzlösung nach ihrer Verwendung entsorgt werden muss. Die konventionell erzeugten Leiterbahnen weisen eine Breite von bis zu 120 µm auf und stellen somit ein optisches Störelement für die homogene Leuchtkraft der OLEDs dar.

Additiver Prozess soll Kosten senken und die Umwelt schonen

Das Fraunhofer ILT entwickelt nun für den Industriepartner Philips ein Laser-Verfahren zum Aufbringen mikroskaliger Leiterbahnen. Auf die Oberfläche des Halbleiters wird eine Maskenfolie aufgelegt, die das Negativ zur später gewünschten Leiterbahngeometrie darstellt. Darauf wird eine Quellfolie angebracht, aus deren Material die zu erzeugende Leiterbahn bestehen soll, beispielsweise Aluminium oder Kupfer. Der Aufbau wird fixiert und mit Laserstrahlung in einer Geschwindigkeit von bis zu 2,5 m/s entlang der Maskengeometrie beaufschlagt. Es bildet sich ein Gemisch aus Schmelzetropfen und Dampf, das von der Quellfolie aus auf das Substrat transferiert wird. Das erstarrte Gemisch ergibt die Leiterbahn, deren Geometrie durch die Maske vorgegeben ist. Da der Prozess an der Umgebungsatmosphäre stattfindet, kann auf eine aufwändige Prozesskammer verzichtet werden. Es entsteht kein Materialverlust, denn das restliche Material der Quellfolie kann wiederverwendet werden.

"Auf diese Weise können wir schmale metallische Bahnen mit einstellbaren Breiten zwischen 40 und 100 µm erzeugen. Sie weisen variable Dicken zwischen 3 und 15 µm sowie einen Flächenwiderstand von Leiterbahnen kommen überall dort zum Einsatz, wo elektrische Energie über nichtleitende Oberflächen aus Glas, Silizium oder anderen Materialien geführt werden soll. Daraus ergeben sich weitere Anwendungen des innovativen Prozesses, beispielsweise für beheizbare Scheiben im Automobil- und Sonderfahrzeugbau sowie für die Fertigung von Halbleitern in der Solarzellentechnologie. Durch zu breite Leiterbahnen entstehen im Fahrzeugbereich Sichteinschränkungen. In der Photovoltaik führen sie aufgrund von Abschattung zu Effizienzeinbußen. In diesen Bereichen besteht daher ebenfalls die konsequente Forderung nach mikroskaligen Leiterbahnen.

Ansprechpartner im Fraunhofer ILT
Für Fragen stehen Ihnen unsere Experten zur Verfügung:
Dipl.-Ing. Christian Vedder
Abteilung Oberflächentechnik
Telefon +49 241 8906-378
christian.vedder@ilt.fraunhofer.de
Dr. Konrad Wissenbach
Abteilung Oberflächentechnik
Telefon +49 241 8906-147
konrad.wissenbach@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | idw
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wheat Initiative holt Weizenforscher aus aller Welt an einen Tisch

25.06.2018 | Veranstaltungsnachrichten

Bielefelder Roboter gewinnt Weltmeisterschaft in Kanada

25.06.2018 | Förderungen Preise

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics