Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Windy Cities: Strom aus dem Wind um die Ecke

15.05.2017

Kooperatives Promotionskolleg „Windy Cities“ erforscht Wege zur energieautarken Stadt

Beim Stichwort Energiewende denkt man meist an große Windparks im Norden Deutschlands oder vor der Meeresküste. Der Transport der so erzeugten Energie in den Süden der Republik erfordert aber aufwändige Hochspannungsleitungen, die in der Bevölkerung umstritten sind.


3D-Modell des Stuttgarter Schlossplatzes. Auf Simulationen wie diese baut das Projekt Windy Cities auf.

© Landeshauptstadt Stuttgart, Stadtmessungsamt

Das kooperative Promotionskolleg „Windy Cities“ der Universität Stuttgart, der Hochschule für Technik Stuttgart (HFT) und der Hochschule Esslingen möchte lokale Kleinwinde, die es in jeder Stadt entlang der Häuser gibt, für die Energiegewinnung nutzen.

Wer schon einmal einen heißen Sommerabend im Stuttgarter Talkessel verbracht hat, kennt das Phänomen: Wenn die Sonne untergeht, strömt plötzlich ein sanfter Wind über die Talkanten in die Stadt und bringt Kühlung. Ähnliches lässt sich auch an der Abbruchkante von Hausdächern beobachten.

„Diese Thermiken wollen wir mit Hilfe von Kleinwindkraftanlagen für die dezentrale Stromversorgung in urbanen Räumen nutzen“, erklären die Sprecher des Kollegs, Prof. Bernd Plietker vom Institut für Organische Chemie der Universität Stuttgart und Prof. Volker Coors vom Zentrum für Geodäsie und Geoinformatik an der HFT Stuttgart.

Die Energieausbeute solcher Kleinwindkraftanlagen ist nicht unerheblich, doch dem wirtschaftlichen Einsatz stehen noch etliche Hürden entgegen. Ein besonderes Problem sind dabei die je nach Windstärke und Verbrauch fluktuierenden Energiemengen, die eine Herausforderung für die Netzstabilität und die Speichertechnologien darstellen. Im Rahmen von „Windy Cities“ soll daher das Zusammenspiel zwischen der Umwandlung von Wind in Strom (Konversion) und der intelligenten Speicherung in urbaner Umgebung untersucht werden.

Dynamische Gebäude- und Stromnetzsimulation

Zum einen wollen die Wissenschaftlerinnen und Wissenschaftler eine dynamische Gebäude- und Stromnetzsimulation auf der Basis eines 3D-Stadtquartiermodells entwickeln, mit der sich der Strombedarf in einem Stadtviertel sowie die Stromerzeugung in den nächsten 24 Stunden präzise vorhersagen lassen. Gekoppelt wird diese Simulation mit einem intelligenten Stromzähler (Smart-Meter-System), der den aktuellen Energieverbrauch erfasst. Das auf diese Weise prognostizierte Lastprofil wird genutzt, um das Laden und Entladen beziehungsweise den Betrieb der Speichermedien – Batterien sowie Wärmepumpen mit Warmwasserspeicher – zu optimieren. Ziel ist es, primär den Eigenenergiebedarf des Gebäudes zu decken und die Einspeisung von Stromspitzen in das Stromnetz zu minimieren.

Neuartige chemische Speicher auf Wasserstoff-Basis

Die bisherigen in der Energieerzeugung verwendeten Speichertechnologien passen jedoch nicht zur Energieproduktion von Kleinwindanlagen, da sie auf große Strommengen ausgerichtet sind. Daher zielt ein weiteres Teilprojekt von Windy Cities darauf, neuartige chemische Speicher zu entwickeln. Dabei soll der an der Universität Stuttgart entstandener Prototyp einer Wasserstoff-Batterie zu Mikroreaktoren weiterentwickelt werden, die sich parallel und in Serie verschalten lassen und einzeln ansteuerbar sind. Wasserstoff ist in Verbindung mit der Rückverstromung über Wasserstoffbrennstoffzellen ein besonders attraktiver Energieträger, weil er eine hohe Speicherdichte erreicht, den Kreislauf aus Energiekonversion, Speicherung und Bereitstellung optimal abbildet und einen geringen CO2-Fußabdruck hinterlässt.

Zwölf Promovierende aus verschiedensten Disziplinen

An der Entwicklung und der Realisierung dieses Konzepts arbeiten im Rahmen des Ministerium für Wissenschaft und Kunst Baden-Württemberg geförderten kooperativen Promotionskolleg zwölf Doktorandinnen und Doktoranden aus unterschiedlichen Disziplinen wie der Chemie, der Geodäsie und den Ingenieurswissenschaften an der Universität Stuttgart, der Hochschule für Technik Stuttgart und der Hochschule Esslingen in dem zusammen.

Kontakt:
Prof. Bernd Plietker, Universität Stuttgart, Institut für Organische Chemie, +49-(0)711-685 64283, bernd.plietker@oc.uni-stuttgart.de
Prof. Volker Coors, Dr. Anja Ernst, HFT Stuttgart, volker.coors@hft-stuttgart.de, anja.ernst@hft-stuttgart.de

Andrea Mayer-Grenu, Wissenschaftsreferentin, Universität Stuttgart, Hochschulkommunikation,Keplerstr. 7, 70174 Stuttgart, Tel. +49 (0)711-685-82176, Andrea.mayer-grenu@hkom.uni-stuttgart.de

Weitere Informationen:

Weitere Informationen: http://windycities.de/de/
3D-Modelle: https://3d.stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Optimierungspotenziale bei Kaminöfen
21.09.2018 | Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe (TFZ)

nachricht Using hydrogen, methane and methanol to reduce CO2 emissions
19.09.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics