Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Nanoteilchen ultradünne CIGSe-Solarzellen effizienter machen

16.10.2015

Erstmals experimentell nachgewiesen: Wie Nanoteilchen ultradünne CIGSe-Solarzellen effizienter machen

CIGSe-Solarzellen sind aus Kupfer, Indium, Gallium und Selen aufgebaut und können hohe Wirkungsgrade erreichen. Um wertvolles Indium einzusparen, soll die CIGSe-Schicht jedoch so dünn wie möglich sein. Dadurch sinkt allerdings der Wirkungsgrad sehr stark.


Die SiO2-Nanoteilchen (schwarz) wurden direkt auf das Molybdän-Substrat (lila) aufgedruckt, das als Rückkontakt dient. Die CIGSe-Schicht (rot) sowie weitere funktionale Schichten wurden auf das Nanomuster aufgewachsen. Weil diese Schichten extrem dünn sind, drückt sich das Muster der Nanoteilchen erkennbar bis zur oberen Schicht durch.

Bild. G.Yin/HZB

Nun hat es ein Team am Helmholtz-Zentrum Berlin (HZB) geschafft, ultradünne CIGSe-Schichten von hoher Qualität herzustellen und mit winzigen Nanoteilchen auf der Rückseite der Zelle den Wirkungsgrad zu steigern.

Nanoteilchen mit Durchmessern von einigen hundert Nanometern reagieren auf Licht in besonderer Weise. Wie sich Anordnungen von solchen Nanoteilchen nutzen lassen, um Solarzellen und andere optoelektronische Bauelemente zu optimieren, untersucht Prof. Dr. Martina Schmid mit der Nachwuchsgruppe Nanooptische Konzepte für die Photovoltaik am Helmholtz-Zentrum Berlin (HZB). Nun kann sie im Journal of the American Chemical Society ACS Nano über einen beachtlichen Erfolg mit ultradünnen CIGSe-Solarzellen berichten.

Unterhalb von einem Mikrometer sinkt die Effizienz noch mehr

CIGSe-Solarzellen erreichen hohe Wirkungsgrade und sind als Solarmodule mit Schichtdicken von einigen Mikrometern bereits kommerziell erhältlich. Doch Indium zählt zu den seltenen und teuren Elementen, so dass die Absorberschichten in Zukunft deutlich dünner werden sollten.

Dies verringert jedoch den Wirkungsgrad, weil dünnere Schichten weniger Licht absorbieren. Doch nicht nur das: unterhalb von einem Mikrometer Dicke tritt ein weiteres Problem auf - die Ladungsträger treffen häufiger aufeinander und rekombinieren am Rückkontakt, so dass sie für die Stromerzeugung „verloren“ gehen.

Ultradünne CIGSe mit Wirkungsgraden von 11,1 %

„Es dauerte mehr als ein Jahr, bis es mir gelang, ultradünne CIGSe-Schichten von nur 0,46 Mikrometern (460 Nanometer) herzustellen, die noch akzeptable Wirkungsgrade von bis zu 11,1% erreichen“, sagt Guanchao Yin, der seine Doktorarbeit im Team von Martina Schmid gerade mit Auszeichnung abgeschlossen hat.

Um den Wirkungsgrad der ultradünnen CIGSe-Zellen weiter zu steigern, sollten dann Anordnungen von Nanoteilchen eingefügt werden. Martina Schmid konnte dafür auf ihre guten Kontakte zur Arbeitsgruppe von Prof. Albert Polman am Center for Nanooptics, Amsterdam zurückgreifen; Diese Gruppe zählt zu den Pionieren auf dem Gebiet der Nanophotonik und ist in der Lage, beliebige Anordnungen von Nanoteilchen mit spezialisierten Nanodruck-Technologien zu produzieren.

Nanoteilchen auf der Vorderseite sind wenig effektiv

Im ersten Schritt brachten die Kollegen aus Amsterdam ein Muster aus dielektrischen TiO2-Nanoteilchen oben auf der ultradünnen Solarzelle auf. Die Nanoteilchen sollten wie Lichtfallen wirken und das Licht in die CIGSe-Schicht weiterleiten. Dennoch wirkte sich dies weitaus weniger positiv auf den Wirkungsgrad aus als beispielsweise bei Siliziumbasierten Solarzellen. Yin stellte daher weitere Versuche an und fand schließlich heraus, was am besten funktionierte: Nanoteilchen hinter der Absorberschicht, direkt auf dem Rückkontakt!

Auf der Rückseite dagegen umso mehr: Der Wirkungsgrad steigt auf 12,3 %

Die Amsterdamer Kollegen stellten dafür eine Anordnung von dielektrischen SiO2 Nanoteilchen direkt auf dem Rückkontakt der Zelle her, einem Molybdän-Substrat. Auf dem so strukturierten Substrat wuchsen Yin und die Kollegen am HZB eine ultradünne CIGSe-Schicht, ebenso wie alle weiteren Schichten, die für die Solarzelle nötig sind. Dadurch stieg der Wirkungsgrad von 11,1% auf 12,3% ! Gleichzeitig nahm die Kurzschluss-Stromdichte der ultradünnen CIGSe-Zelle um mehr als 2 mA/cm2 zu. Mit zusätzlichen Antireflektions-Nanoteilchen auf der Vorderseite ließ sich der Wirkungsgrad sogar auf bis zu 13,1% steigern.

Nanoteilchen streuen das Licht in die aktive Schicht und verhindern die Rekombination

“Die Nanoteilchen auf der Rückseite fangen das Licht und streuen es effizient zurück in die aktive CIGSe-Schicht, deren Absorption dadurch erhöht wird”, erklärt Yin. Weitere Untersuchungen deuten darauf hin, dass die SiO2-Nanoteilchen auf der Rückseite der Zelle außerdem die Rekombination von Ladungsträgern einschränken, was ebenfalls zur Steigerung des Wirkungsgrads beiträgt. “Diese Arbeit zeigt erstmals experimentell, wie sich durch Nanoteilchen auch bei ultradünnen CIGSe-Solarzellen die Effizienz steigern lässt. Dies hat uns auf weitere Ideen gebracht, wie wir zusätzlich zu den optischen auch die elektrischen Eigenschaften von Nanoteilchen nutzen können, um die Absorption von Licht zu erhöhen und den Verlust von Ladungsträgern zu begrenzen“, sagt Martina Schmid.

Zur Publikation:
M.-C. van Lare*, G. Yin*, A. Polman, M. Schmid “Light coupling and trapping in ultra-thin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns” ACS Nano

DOI: 10.1021/acsnano.5b04091 (2015), *equal contribution


Kontakt:
Prof. Dr. Martina Schmid
Nanooptische Konzepte für die Photovoltaik
E-Mail: martina.schmid@helmholtz-berlin.de

Guanchao Yin
E-Mail: guanchao.yin@helmholtz-berlin.de

Pressestelle HZB
Dr. Antonia Rötger
E-Mail: antonia.roetger@helmholtz-berlin.de
Tel.: +49 30 8062-43733

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14334&sprache=de&ty...
http://pubs.acs.org/doi/abs/10.1021/acsnano.5b04091

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Mobilität 2035: Technologiekalender unterstützt kleine und mittlere Unternehmen beim Wandel
29.07.2020 | Karlsruher Institut für Technologie

nachricht Anodenmaterial für sichere und langlebige Batterien
28.07.2020 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Im Focus: Lastenfahrräder: Leichtbaupotenziale erkennen und nutzen

Lastenräder sind »hipp« und ein Symbol für klimafreundliche Mobilität, tagtäglich begegnen wir ihnen. Straßen und Radwege müssen an diese neue Fahrzeugkategorie angepasst werden. Aber nicht nur die Infrastruktur kann optimiert werden, Lastenräder selbst bieten noch reichlich Potenzial. Im neu gestarteten Projekt »LastenLeichtBauFahrrad« (L-LBF) suchen Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF zusätzliche Leichtbaupotenziale dieser urbanen Vehikel. Über die Fortschritte des Projekts informiert eine eigene Webseite unter www.lbf.fraunhofer.de/L-LBF 

Form und Design von Lastenfahrrädern variieren von schnittig schick bis kastig oder tonnig. Sie stellen das neue Statussymbol der »mittleren Generation« dar....

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

Städte als zukünftige Orte der Nahrungsmittelproduktion?

29.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tief in die Zelle geblickt

05.08.2020 | Biowissenschaften Chemie

Tellur macht den Unterschied

05.08.2020 | Biowissenschaften Chemie

Humane zellbasierte Testsysteme für Toxizitätsstudien: Ready-to-use Tox-Assay (hiPS)

05.08.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics