Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wider den Widerstand - Batterien sollen kleiner und leistungsfähiger werden

18.01.2011
Mobiles Kommunizieren und Arbeiten mit Handy, Smartphone oder Notebook wäre ohne kleine Lithium-Ionen-Batterien nicht denkbar. Ihre Leistungsfähigkeit und Lebenszeit stoßen jedoch bei Anwendungen etwa in der Elektromobilität an ihre Grenzen. Mit einem in der Batterieforschung ungewöhnlichen Verfahren wollen Darmstädter Forscher den Weg zu kleineren und leistungsfähigeren Batterien ebnen.

Wie jede Batterie bestehen Lithium-Ionen-Batterien aus drei Komponenten: dem Pluspol (Kathode), dem Minuspol (Anode) und dem sogenannten Elektrolyten, der die beiden Pole voneinander trennt, durch den aber während des Betriebs Ionen wandern. Wie die verschiedenen Materialien an ihren Grenzflächen miteinander reagieren und welche Schichten sich hierbei bilden, ist bislang nicht ausreichend verstanden.

„Um Lithium-Ionen Batterien zu optimieren, müssen wir verstehen, welche chemischen Reaktionen an den Grenzflächen innerhalb der Batterie stattfinden“, erläutert Dr. René Hausbrand, Leiter der Arbeitsgruppe Lithium-Ionen-Batterien vom Fachgebiet Oberflächenforschung der TU Darmstadt.

Neue Erkenntnisse erhoffen sich die Darmstädter von einem Verfahren, das in der Batterieforschung bisher nur wenig angewandt wird: „Wir nutzen Reaktionskammern, die in ein Ultrahochvakuum-System integriert sind. Auf diese Weise können wir unter idealisierten Bedingungen die Reaktionen an Grenzflächen beobachten, also dort, wo unterschiedliche Materialien aufeinandertreffen“, so Hausbrand. Die Wissenschaftler tragen dabei Elektrolytmaterialien in hauchdünnen Scheibchen auf Kathodenmaterialien auf und beobachten die Reaktionen, die sie immer wieder unterbrechen können. Hierzu nehmen sie das Kathodenmaterial mit dem aufgetragenen Elektrolyten aus der Reaktionskammer heraus, transferieren es in das Ultrahochvakuum und analysieren die Grenzfläche. Die Forscher beobachten auf diese Weise, wie die Moleküle des Elektrolyten mit dem Material der Kathode reagieren, wie sich die chemische Struktur der Oberfläche der Kathode ändert und welche Moleküle sich dort absetzen und eine Schicht bilden.

„Wie genau diese manchmal nur wenige Moleküllagen dicken Ablagerungen auf der Kathode wirken, ist noch nicht vollständig geklärt. Sie werden aber eher als nachteilig für die Lebensdauer der Batterien angesehen, da sie den Innenwiderstand erhöhen“, erklärt Hausbrand. Die Leitfähigkeiten der einzelnen Komponenten für Lithium-Ionen und ihre Durchgängigkeit durch die verschiedenen Grenzflächen bestimmen wesentlich den Innenwiderstand der Batterie, der natürlich so gering wie möglich gehalten werden muss. Je kleiner der Innenwiderstand, desto größer die Leistungsfähigkeit. „Wenn wir genau wissen, was diese Schichten bewirken, können wir die Grenzfläche entsprechend optimieren“, blickt Hausbrand in die nahe Zukunft. So bringt der Physiker gemeinsam mit seinen Kollegen beispielsweise zum Schutz des Materials an der Kathode künstliche Schichten auf und misst die Kapazität über einen längeren Zeitraum.

Leistung braucht Oberfläche

Neben der Optimierung der Grenzflächen von Lithium-Ionen-Batterien haben die Darmstädter Wissenschaftler ihr Augenmerk auch auf Mikrobatterien gerichtet, deren Schichtdicke etwa einem Hundertstel eines Haares entspricht. Sie können in Mikrosystemen etwa in der Robotik zum Einsatz kommen. „Wegen ihrer kleinsten Abmessungen und der Art ihrer Herstellung können keine flüssigen Elektrolyte mehr verwendet werden wie bei den herkömmlichen Batterien, sondern nur noch feste Materialien“, berichtet Hausbrand. Welche Materialien als Festelektrolyte geeignet sind und wie sie am besten hergestellt werden, ist ein Thema, dem sich die Forscher auch gemeinsam mit Industriepartnern widmen. Die Leistungsfähigkeit der Mikrobatterien in Zukunft deutlich erhöhen könnte hierbei eine Strategie, die die Darmstädter zusammen mit ihren Partnern nun umsetzen wollen: Das Problem ist nämlich, dass leistungsfähige Batterien große Oberflächen benötigen – die es naturgemäß bei Mikrobatterien nicht gibt. „Wir wollen deshalb die Materialien auf Substrate aufbauen, die quasi wie eine Hügellandschaft aussehen“, so Hausbrand. Mit diesem Trick, sozusagen Hügel und Täler zu schaffen, kann die Oberfläche um ein Vielfaches erhöht werden, ohne die geometrische, das heißt die für das Auge sichtbare Oberfläche zu vergrößern. Allerdings benötigt man für dieses Vorgehen auch neue Verfahren, um die Materialien auf die Oberflächen aufzutragen. Hausbrand geht davon aus, dass entsprechende Prototypen in drei bis fünf Jahren erhältlich sein werden.

Das Fachgebiet Oberflächenforschung unter der Leitung von Prof. Dr. Wolfram Jaegermann ist Teil des Sonderforschungsbereichs „Elektrische Ermüdung von Funktionswerkstoffen“ und hat zusammen mit drei anderen Fachgebieten vom Bundesforschungsministerium im Rahmen des Konjunkturpakets II 2,5 Millionen Euro für seine Forschungen auf dem Gebiet von Lithium-Ionen- Batterien erhalten.

Pressekontakt
Dr. René Hausbrand
Fachgebiet Oberflächenforschung
Tel. 06151/16-70836
E-Mail: hausbrand@surface.tu-darmstadt.de

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Vernetzte Beleuchtung: Weg mit dem blinden Fleck
18.07.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie
17.07.2018 | Karlsruher Institut für Technologie (KIT)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Mobilfunkstrahlung kann die Gedächtnisleistung bei Jugendlichen beeinträchtigen

19.07.2018 | Studien Analysen

Mit dem Nano-U-Boot gezielt gegen Kopfschmerzen und Tumore

19.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics