Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Wien entwickelt neue Halbleiter-Bearbeitungstechnik

22.01.2018

Poröse Strukturen aus Siliziumcarbid kann man nun an der TU Wien herstellen. Das bringt neue Möglichkeiten für mikro- und nanotechnisch hergestellte Sensoren und Elektronikkomponenten, aber auch für integrierte Spiegelelemente, die bestimmte Farben filtern.

Sie sehen aus wie ein Schwamm im Nano-Format: Extrem feine poröse Strukturen mit winzigen Löchern kann man heute aus Halbleitern herstellen. Das bietet neue Möglichkeiten, winzige Sensoren zu bauen oder ungewöhnliche optische und elektronische Bauteile zu konstruieren.


Eine mit der neuen Methode bearbeitete Folie - die Struktur wurde so designt, dass grünes Licht durchgelassen wird.

TU Wien


Eine Mikroskop-Aufnahme der Struktur: Die unterschiedlichen Schichten sind klar zur erkennen.

TU Wien

Schon bisher gab es dazu Experimente mit porösen Strukturen aus Silizium. An der TU Wien gelang es nun, ein Verfahren für die kontrollierte Herstellung von porösem Siliziumcarbid zu entwickeln.

Siliziumcarbid hat entscheidende Vorteile gegenüber Silizium: Es ist chemisch widerstandsfähiger und kann deshalb ohne zusätzliche Beschichtung für z.B. biologische Anwendungen eingesetzt werden.

Um die Möglichkeiten der neuen Technik zu demonstrieren, wurde nun ein spezieller Spiegel aus einer Vielzahl hauchdünner Schichten mit einer Dicke von jeweils etwa 70 nm mit unterschiedlicher Porosität hergestellt, der unterschiedliche Lichtfarben selektiv reflektiert.

Kontrolle über die Lichtbrechung

„Aus einem soliden Stück eines Halbleitermaterials eine poröse Struktur mit unzähligen Nano-Löchern zu machen, liefert uns eine ganze Reihe spannender technischer Möglichkeiten“, sagt Markus Leitgeb vom Institut für Sensor- und Aktuatorsysteme der TU Wien.

Er entwickelte die neue Materialbearbeitungstechnik im Rahmen seiner Dissertation bei Prof. Ulrich Schmid in Zusammenarbeit mit der CTR Carinthian Tech Research AG und gefördert durch das Competence Center for Excellent Technologies (COMET) Programm.

„Die poröse Struktur beeinflusst die Art, wie Lichtwellen vom Material abgelenkt werden. Wenn wir die Porosität kontrollieren können, haben wir daher auch Kontrolle über den optischen Brechungsindex des Materials.“

Das kann in der Sensorik sehr nützlich sein – so kann man beispielsweise den Brechungsindex von winzigen Flüssigkeitsmengen mit einem porösen Halbleiter-Sensor messen und so unterschiedliche Flüssigkeiten zuverlässig voneinander unterscheiden.

Eine andere technisch attraktive Möglichkeit ist, ganz gezielt bestimmte Bereiche des Materials zunächst porös zu machen, mit einer neuen Schicht zu überwachsen, und dann kontrolliert zusammenfallen zu lassen – so kann man Mikro- und Nanostrukturen herstellen, die ebenfalls für die Sensorik eine wichtige Rolle spielen.

Doch entscheidend ist bei all diesen Techniken die passende Wahl des Ausgangsmaterials. „Bisher wurde dafür Silizium verwendet, ein Material, mit dem man einfach bereits sehr viel Erfahrung hat“, sagt Prof. Ulrich Schmid. Doch Silizium hat auch entscheidende Nachteile: Unter harten Umgebungsbedingungen, etwa bei großer Hitze oder in basischen Lösungen, werden Strukturen aus Silizium angegriffen und schnell zerstört. Für biologische oder elektrochemische Anwendungen sind Sensoren aus Silizium deshalb oftmals nicht brauchbar.

Daher versuchte man an der TU Wien, Ähnliches mit dem chemisch deutlich robusteren und biokompatiblen Halbleiter Siliziumcarbid zu erreichen – doch um poröse Strukturen aus Siliziumcarbid herstellen zu können, waren einige besondere Kunstgriffe nötig.

Der farbselektive Spiegel

Zunächst wird die Oberfläche gesäubert, dann wird sie teilweise mit einer dünnen Platin-Schicht überzogen. Durch Eintauchen in eine Ätzlösung und Belichten mit UV-Licht werden im Siliziumcarbid Oxidationsprozesse in Gang gesetzt.

Auf den nicht mit Platin bedeckten Bereichen entsteht so eine erste 1 µm dünne poröse Schicht. Danach legt man zusätzlich eine elektrische Spannung an um die Porosität sowie die Schichtdicke der Folgeschichten exakt einstellen zu können. Die erste poröse Schicht unterstützt dabei die Bildung erster Poren beim Anlegen der elektrischen Spannung

„Die poröse Struktur breitet sich von der Oberfläche her immer weiter ins Innere des Materials aus“, erklärt Markus Leitgeb. „Durch Anpassen der elektrischen Spannung können wir während dieses Prozesses kontrollieren, welche Porosität wir in welcher Tiefe haben wollen.“

So wurde es möglich, eine komplizierte Schichtstruktur aus poröseren und weniger porösen Siliziumcarbid-Schichten herzustellen die man schlussendlich durch drastisches Erhöhen der Spannung vom Substratmaterial ablösen kann. Die Dicke dieser Schichten kann man so wählen, dass die Schichtstruktur bestimmte Lichtwellenlängen besonders gut reflektiert oder besonders gut passieren lässt – ein integrierter, farb-selektiver Spiegel entsteht.

„Wir haben damit gezeigt, dass man mit unserem neuen Verfahren die Porosität von Siliziumcarbid auf mikroskopischer Skala zuverlässig kontrollieren kann“, sagt Ulrich Schmid. „Diese Technologie verspricht viele Anwendungsmöglichkeiten – von Anti-Reflex-Beschichtungen über optische oder elektronische Bauteile und spezielle Biosensoren bis hin zu widerstandsfähigen Superkondensatoren.“

Rückfragen:
Prof. Ulrich Schmid
Institut für Sensor- und Aktuatorsysteme
Technische Universität Wien
Gußhausstraße 27-29, 1040 Wien
T: +43-1-58801-36689
ulrich.e366.schmid@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ungesundes Sitzen vermeiden: Stuhl erkennt Sitzposition und motiviert zur Änderung der Körperhaltung
10.12.2018 | Technische Hochschule Köln

nachricht Ganz ohne Zauberstab: Bayreuther Forscher steuern mit Schallwellen schwebende Objekte
04.12.2018 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

ICTM Conference 2019 in Aachen: Digitalisierung als Zukunftstrend für den Turbomaschinenbau

12.12.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Biofilme generieren ihre Nährstoffversorgung selbst

12.12.2018 | Interdisziplinäre Forschung

Tanz mit dem Feind

12.12.2018 | Physik Astronomie

Künstliches Perlmutt nach Mass

12.12.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics