Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trockenakku für mehr Sicherheit

16.08.2016

Forschende der ETH Zürich entwickelten einen Lithium-Ionen-Akku, der ausschliesslich aus festem Material besteht – er enthält weder Flüssigkeiten noch Gele. Selbst bei sehr hohen Temperaturen kann er sich nicht entzünden. Die neuen Akkus haben somit einen Sicherheitsvorteil gegenüber herkömmlichen Batterien, und sie ermöglichen ganz neue Formen des Batteriedesigns.

In Lithium-Ionen-Akkus kann man auf kleinem Raum viel Energie speichern. Dies macht sie zur Energiequelle der Wahl für mobile Elektronikgeräte. Handys, Laptops, E-Bikes und Elektroautos werden heute mit solchen Akkus betrieben. Forschende der ETH Zürich haben nun einen Akku-Typen entwickelt, der im Gegensatz zu den herkömmlichen ausschliesslich aus festen chemischen Verbindungen besteht und nicht entzündlich ist.


Eine Scheibe des (weissen) Lithiumgranat-Elektrolyten, beschichtet mit einer (schwarzen) Lithiumverbindung als Minuspgarol im Labor der ETH-Forschenden.

ETH Zürich / Fabio Bergamin

Klassische Lithium-Ionen-Akkus sind nämlich nicht ganz ungefährlich: Mehrfach sind in der Vergangenheit Handybatterien explodiert, was zu Verletzungen geführt hat. Und in der Altstadt von Steckborn am Bodensee brannte vor einem halben Jahr eine ganze Häuserzeile nieder. Ausgelöst wurde der Grossbrand durch einen Modellbau-Akku, der Feuer fing, weil er mutmasslich unsachgemäss aufgeladen wurde.

Festkörperakkus kann man stark erhitzen

In klassischen Lithium-Ionen-Akkus sowie in den meisten anderen Batterien sind der Plus- und Minuspol – die beiden Elektroden – aus festen leitenden Verbindungen gefertigt; zwischen diesen Elektroden bewegen sich Ladungen in einem flüssigen oder gelförmigen Elektrolyten. Lädt man einen solchen Akku unsachgemäss auf (überlädt man ihn) oder lässt man ihn in der Sonne liegen, kann sich die Flüssigkeit entzünden oder das Gel kann aufquellen.

Anders in sogenannten Festkörperakkus (engl. solid state batteries), die sich zurzeit in vielen Forschungslabors weltweit in Entwicklung befinden: In ihnen sind nicht nur die Elektroden, sondern auch der dazwischenliegende Elektrolyt aus festem Material gefertigt. «Feste Elektrolyte beginnen nicht zu brennen, selbst wenn sie sehr stark erhitzt werden oder offen an der Luft liegen», erklärt Jennifer Rupp. Sie ist Professorin für elektrochemische Materialien an der ETH Zürich und leitete die Entwicklung des neuen Akku-Typen.

Forschung an der Grenzfläche

Eine der Herausforderungen bei der Entwicklung von Festkörperakkus ist, Elektroden und Elektrolyt so miteinander zu verbinden, dass Ladungen möglichst widerstandsfrei zwischen ihnen zirkulieren können. Für diese Elektroden-Elektrolyt-Grenzfläche haben die ETH-Forschenden nun einen verbesserten Herstellungsansatz gefunden.

Im Labor stellten sie einen sandwichartig aufgebauten Akku her: Zwischen den beiden Elektroden liegt eine Schicht einer lithiumhaltigen Verbindung (Lithiumgranat) als fester Elektrolyt. Lithiumgranat gehört zu den Materialien mit der höchsten bekannten Leitfähigkeit für Lithium-Ionen.

«Bei der Herstellung sorgten wir dafür, dass die feste Elektrolytschicht eine poröse Oberfläche erhielt», sagt Jan van den Broek, Master-Student in Rupps Gruppe und einer der Erstautoren der Studie. Darauf trugen die Forschenden das Material des Minuspols in flüssiger Form auf; es konnte in die Poren eindringen. Schliesslich härteten die Wissenschaftler den Akku bei 100 Grad Celsius.

«Mit einem flüssigen oder gelförmigen Elektrolyten hätte man einen Akku nicht auf so hohe Temperaturen erhitzen können», so van den Broek. Dank dem Trick mit den Poren konnten die Forschenden die Kontaktfläche zwischen Minuspol und Elektrolyt stark vergrössern, was letztlich den Effekt hat, dass der Akku schneller geladen werden kann.

Höhere Temperaturen für grössere Kapazität

So hergestellte Akkus könnte man theoretisch bei normaler Umgebungstemperatur betreiben, sagt Semih Afyon, ehemaliger Wissenschaftler in Rupps Gruppe und heute Professor am Izmir Institute of Technology in der Türkei. Wirklich gut funktionieren sie im gegenwärtigen Entwicklungsstand allerdings erst bei etwa 95 Grad. «Die Lithium-Ionen können sich dann besser im Akku bewegen», so Afyon.

Diesen Umstand könnte man beispielsweise in Batterie-Speicherkraftwerken nutzen, die überschüssige Energie speichern und zeitversetzt abgeben können. «In vielen Industrieprozessen entsteht heute Abwärme, die ungenutzt verpufft», sagt Afyon. «Indem man Batterie-Speicherkraftwerke mit Industrieanlagen koppelt, könnte man die Abwärme nutzen, um das Speicherkraftwerk bei optimalen Temperaturen zu betreiben.»

Neue Dünnschichtakkus

«Viele derzeitige Festkörperakku-Forschungsprojekte fokussieren sich auf die Verbesserung der Elektrolyte», sagt Afyon. Es gebe nur wenige Studien wie diese, in der Wissenschaftler einen ganzen Festkörper-Akku zusammenbauen – mit den Methoden, die auch in der industriellen Produktion zum Einsatz kommen – und testen.

«Wir haben in dieser Arbeit erstmals einen ganzen Lithium-Ionen-Akku mit einem festen Lithiumgranat-Elektrolyten und einem festen Minuspol aus einem Oxid hergestellt. Damit haben wir gezeigt, dass es möglich ist, mit Lithiumgranat ganze Batterien zu bauen», sagt ETH-Professorin Rupp. Dank diesem festen Elektrolyten könne man nicht nur Batterien bei höheren Temperaturen betreiben, sondern auch Dünnschichtakkus bauen. Darunter solche, die man direkt auf Siliziumchips platzieren könne.

«Diese Dünnschichtakkus könnten die Energieversorgung von tragbaren Elektronikgeräten revolutionieren», sagt Rupp. In weiterer Forschung verfolge sie und ihr Team diesen Ansatz weiter. Dazu arbeiteten sie auch mit Industriepartnern zusammen sowie dem Paul Scherrer Institut und der Empa. In den unmittelbar nächsten Schritten wird es darum gehen, den Akku zu optimieren, insbesondere die Leitfähigkeit an der Elektroden-Elektrolyt-Grenzfläche weiter zu erhöhen.

Literaturhinweis

Van den Broek J, Afyon S, Rupp JLM: Interface-Engineered All-Solid-State Li-Ion Batteries Based on Garnet-Type Fast Li+ Conductors. Advanced Energy Materials 2016, 1600736, doi: 10.1002/aenm.201600736 [http://dx.doi.org/10.1002/aenm.201600736]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/08/festkoerpe...

News und Medienstelle | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Energieversorgung in der Antarktis: Ist solarer Wasserstoff eine Alternative zu Erdöl?
22.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vom Lichtdoping für Gemüse bis zur Wasseraufbereitung
17.05.2019 | Technische Universität Berlin

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Effizientes Wertstoff-Recycling aus Elektronikgeräten

24.05.2019 | Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schweißen ohne Wärme

24.05.2019 | Maschinenbau

Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem

24.05.2019 | Biowissenschaften Chemie

Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken

24.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics