Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Thermoelektrik auf dem Weg zur Industriereife

02.12.2013
Halb-Heusler-Verbindungen eignen sich besonders gut, um thermoelektrische Module herzustellen. Aus Abwärme kann mit ihnen Strom gewonnen werden. Forscher haben die Metalllegierungen erstmals im Kilomaßstab hergestellt.

Heute gehen mehr als zwei Drittel der weltweit eingesetzten Primärenergien wie Öl oder Gas als Abwärme verloren. Mit thermoelektrischen Modulen ließe sich ein Teil davon bei Kraftwerken, Industrie- oder Heizungsanlagen sowie Autos nutzen. Die Thermoelektrik gewinnt aus Temperaturunterschieden Strom.


Die einzelnen Bausteine thermoelektrischer Module sind nur wenige Millimeter groß. Sie werden aus bestimmten Metalllegierungen – zum Beispiel Halb-Heusler-Verbindungen – herausgesägt.
© Fraunhofer IPM

Integriert in die Abgasanlage eines Pkw beispielsweise könnten die Module Strom erzeugen und damit die Lichtmaschine des Fahrzeugs entlasten. »Angesichts immer schärferer Umweltregeln der EU ist das auch für die Autohersteller kein uninteressanter Aspekt«, so Dr. Kilian Bartholomé vom Fraunhofer-Institut für Physikalische Messtechnik IPM in Freiburg.

Doch obwohl die wesentlichen Prinzipien bereits seit fast 200 Jahren bekannt sind, steckt die Technologie noch immer größtenteils in den Kinderschuhen. Es fehlt an effizienten Herstellungsverfahren und geeigneten Materialien. Dem IPM ist dabei jetzt ein großer Entwicklungsschritt gelungen. Die Forscher haben gezeigt, dass Halb-Heusler-Verbindungen – ein für thermoelektrische Prozesse sehr gut geeignetes Material – wesentlich effizienter und kostengünstiger hergestellt werden können, als das bisher möglich war.

Im vom Bundesministerium für Wirtschaft und Technologie (BMWi) geförderten Projekt »thermoHEUSLER« arbeiteten sie mit der Robert Bosch GmbH, dem Institut für Anorganische Chemie und Analytische Chemie der Johannes-Gutenberg-Universität Mainz, der Vacuumschmelze in Hanau und der Isabellenhütte in Dillenburg zusammen.

»Halb-Heusler-Verbindungen eignen sich besonders gut für die thermoelektrische Anwendung. Sie erfüllen – fast – alle dafür notwendigen Kriterien«, erläutert Projektleiter Dr. Benjamin Balke von der Universität Mainz, Experte für die Materialentwicklung. »Die Metalllegierungen bestehen aus weit verbreiteten Rohstoffen, zum Beispiel Nickel, sind wesentlich umweltverträglicher als bisher eingesetzte Materialien, verfügen über gute thermoelektrische Eigenschaften und halten hohe Temperaturen aus.«

Effizientes Material im Kilomaßstab hergestellt

Die thermoelektrische Güte messen Ingenieure mit dem »ZT-Wert«. Von der Industrie gefordert werden Werte größer eins. Im Projekt »thermoHEUSLER« haben die Partner jetzt einen Wert von 1,2 erreicht. »Das entspricht den besten bisher veröffentlichten Werten für Halb-Heusler-Verbindungen«, sagt Bartholomé. Entscheidend für die industrielle Anwendung ist es, die im Labor erreichten Effizienzwerte auch in der Massenproduktion zu ereichen. Während »thermoHEUSLER« ist es der Vacuumschmelze und der Isabellen- hütte erstmals gelungen, dieses sehr effiziente Halb-Heusler-Material im Kilogrammmaßstab herzustellen. Die dabei synthetisierten Legierungen haben eine lange Tradition: Der deutsche Bergbauingenieur, Chemiker und Namensgeber Friedrich Heusler war einst Leiter der Isabellenhütte.

Thermoelektrische Module sind aus wenigen Millimeter großen Klötzchen zusammengesetzt. Diese bestehen aus zwei unterschiedlichen Typen thermoelektrischen Materials – dem n-Typ und dem p-Typ. Ein Knackpunkt für die Effizienz der Module ist das Design ihrer elektrischen Kontakte. Sie müssen große Temperaturunterschiede vertragen, langzeitstabil sein und gleichzeitig den elektrischen Widerstand möglichst gering halten. Genau das haben die Wissenschaftler im Projekt »thermoHEUSLER« mit einem speziell entwickelten Lötsystem geschafft.

Dass thermoelektrische Module zur Energieeffizienz im Automobil beitragen können, haben verschiedene internationale Konsortien gezeigt. Bis zu 600 Watt elektrische Leistung konnten Prototypen bereits aus der Abwärme am Abgasstrang eines Pkw erzeugen. »In Deutschland waren zu Jahresbeginn fast 60 Millionen Fahrzeuge registriert. Wären diese alle mit den kleinen thermoelektrischen Kraftwerken an der Abgasanlage ausgerüstet, ließe sich theoretisch schon heute Energie in einer Größenordnung einsparen, wie sie ein Kernkraftwerk jährlich produziert. Das entspricht in etwa einer Ersparnis von mehreren Millionen Tonnen CO2«, so Bartholomé.

Dr. Kilian Bartholomé | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/dezember/thermoelektrik.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Optimierungspotenziale bei Kaminöfen
21.09.2018 | Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe (TFZ)

nachricht Using hydrogen, methane and methanol to reduce CO2 emissions
19.09.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics