Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Terahertz-Strahl bricht Rekorde

20.01.2020

An der TU Wien wurde eine neue, extrem effiziente Quelle von Terahertz-Strahlung entwickelt: Laser machen die Luft zum Plasma, dabei entsteht Strahlung mit vielen Einsatzmöglichkeiten.

Terahertz-Strahlen verwendet man bei den Sicherheitschecks am Flughafen, für medizinische Untersuchungen oder auch für Qualitätskontrollen in der Industrie. Allerdings ist Strahlung im Terahertz-Bereich extrem schwer zu erzeugen.


Claudia Gollner

TU Wien

An der TU Wien ist es nun gelungen, eine Terahertz-Strahlungsquelle zu entwickeln, die gleich mehrere Rekorde bricht: Sie ist extrem effizient, ihr Spektrum ist sehr breit – sie erzeugt unterschiedliche Wellenlängen aus dem gesamten Terahertz-Bereich.

Dadurch ermöglicht sie auch die Herstellung kurzer Strahlungspulse mit sehr hoher Strahlungsintensität. Die neue Terahertz-Technologie wurde nun im Fachjournal Nature Communications präsentiert.

Die „Terahertz-Lücke“ zwischen gewöhnlichen Lasern und Antennen

„Terahertz-Strahlung hat sehr nützliche Eigenschaften“, sagt Claudia Gollner vom Institut für Photonik (Fakultät für Elektrotechnik und Informationstechnik der TU Wien). „Sie kann viele Materialien problemlos durchdringen, ist aber im Gegensatz zur Röntgenstrahlung unbedenklich, weil es sich nicht um ionisierende Strahlung handelt.“

Technisch gesehen befindet sich die Terahertz-Strahlung allerdings gerade im schwer zugänglichen Niemandsland zwischen zwei wohlbekannten Gebieten: Strahlung mit höherer Frequenz kann man mit Hilfe von gewöhnlichen Festkörper-Lasern erzeugen.

Strahlung mit niedriger Frequenz, wie wir sie etwa für den Mobilfunk verwenden, wird von Antennen abgestrahlt. Genau dazwischen, im Terahertz-Bereich, liegen die größten Herausforderungen.

In den Laserlabors der TU Wien muss daher einiges an Aufwand betrieben werden, um die gewünschten hochintensiven Terahertz-Strahlungspulse zu erzeugen.

„Unser Ausgangspunkt ist die Strahlung eines Infrarot-Lasersystems. Es wurde bei uns am Institut für Photonik entwickelt und ist in seiner Form einzigartig auf der Welt“, sagt Claudia Gollner. Zunächst wird das Laserlicht durch ein sogenanntes „nichtlineares Medium“ geschickt. In diesem Material wird die Infrarot-Strahlung verändert, ein Teil davon wird in Strahlung mit doppelt so hoher Frequenz umgewandelt.

„Nun haben wir also zwei verschiedene Arten von Infrarot-Strahlung. Diese beiden Strahlungsanteile werden dann miteinander überlagert. So entsteht eine Welle, deren elektrisches Feld eine ganz bestimmte asymmetrische Form aufweist“, erklärt Gollner.

Ein Plasma aus heißer Luft

Diese elektromagnetische Welle ist intensiv genug, um Elektronen aus den Molekülen der Luft herauszureißen. Die Luft verwandelt sich in ein glühendes Plasma. Durch die spezielle Form der Infrarot-Welle werden die Elektronen dann so beschleunigt, dass dabei die gewünschte Terahertz-Strahlung entsteht.

„Unsere Methode ist extrem effizient: 2,3% der zugeführten Energie wird in Terahertz-Strahlung umgewandelt – das ist um Größenordnungen mehr als man mit anderen Methoden erreicht. Das führt zu außergewöhnlich hohen Terahertz-Energien von beinahe 200 µJ“, sagt Claudia Gollner.

Ein weiterer wichtiger Vorteil der neuen Methode ist, dass ein sehr breites Spektrum an Terahertz-Strahlung erzeugt wird. Ganz unterschiedliche Wellenlängen aus dem Terahertz-Bereich werden gleichzeitig emittiert. Dadurch entstehen extrem intensive kurze Strahlungspulse. Je größer das Spektrum unterschiedlicher Terahertz-Wellenlängen, umso kürzere und intensivere Pulse lassen sich generieren.

Große Hoffnung auf zahlreiche Anwendungen

„Damit steht nun erstmals eine Terahertz-Quelle für extrem hohe Strahlungsintensitäten zur Verfügung“, sagt Andrius Baltuska, der Leiter der Forschungsgruppe an der TU Wien. „Erste Experimente mit Zink-Tellurid-Kristallen zeigen bereits, dass sich die Terahertz-Strahlung ausgezeichnet eignet, um materialwissenschaftliche Fragen auf ganz neue Weise zu untersuchen. Wir sind überzeugt davon, dass diese Methode eine große Zukunft hat.“

Wissenschaftliche Ansprechpartner:

Dipl.-Ing. Claudia Gollner
Institut für Photonik
Technische Universität Wien
Gußhausstraße 25-29, 1040 Wien
T +43-1-58801-38787
claudia.gollner@tuwien.ac.at

Dr. Audrius Pugzlys
Institut für Photonik
Technische Universität Wien
Gußhausstraße 25-29, 1040 Wien
T +43-1-58801-38720
audrius.pugzlys@tuwien.ac.at

Originalpublikation:

Koulouklidis et al., Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments, Nature Communications 11, 292 (2020). https://www.nature.com/articles/s41467-019-14206-x

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Fit für die industrielle Fertigung? Aluminium-Batterien im Fokus des Verbundvorhabens „ProBaSol“ an der TU Freiberg
21.02.2020 | Technische Universität Bergakademie Freiberg

nachricht Haben ein Auge für Farben: druckbare Lichtsensoren
19.02.2020 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Das magnetotaktische Bakterium Magnetococcus marinus schwimmt mit Hilfe von zwei Bündeln von Geißeln. Außerdem besitzen die Bakterienzellen eine Art intrazelluläre Kompassnadel und können daher mit einem Magnetfeld gesteuert werden. Sie werden deshalb als biologisches Modell für Mikroroboter benutzt. Ein internationales Team der Universität Göttingen, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der CEA Cadarache (Frankreich) hat nun aufgeklärt, wie sich diese Bakterien bewegen und deren Schwimmgeschwindigkeit bestimmt. Die Ergebnisse sind in der Fachzeitschrift eLife erschienen.

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der...

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schiffsexpedition bringt Licht ins Innere der Erde

24.02.2020 | Geowissenschaften

Elektronenbeugung zeigt winzige Kristalle in neuem Licht

24.02.2020 | Biowissenschaften Chemie

Antikörper als Therapiealternative bei Tumoren am Hör- und Gleichgewichtsnerv?

24.02.2020 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics