Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tarnkappe könnte Solarzellen-Effizienz erhöhen

25.09.2015

Ein Erfolgsfaktor für die Energiewende ist der Ausbau der erneuerbaren Energien. Allerdings ist deren Wirkungsgrad gegenüber herkömmlichen Energiequellen zum Teil noch deutlich geringer. Die Effizienz von handelsüblichen Solarzellen beispielsweise liegt bei etwa 20 Prozent. Wissenschaftler am Karlsruher Institut für Technologie (KIT) veröffentlichten nun einen unkonventionellen Weg, um die Effizienz der Panels zu steigern: Optische Tarnkappen leiten das Sonnenlicht um Objekte, wie etwa die Kontakte zur Stromabfuhr herum, die eigentlich einen Schatten auf das Solarpanel werfen. DOI: 10.1364/OPTICA.2.000850

Aber nicht nur für die Energiewende, sondern auch zur Steigerung der Wirtschaftlichkeit muss die Energieeffizienz von Solarpanels deutlich verbessert werden.


Eine spezielle Tarnkappen-Beschichtung (rechts) leitet Sonnenlicht an den Kontakten für die Stromableitung vorbei, auf die aktive Fläche der Solarzelle.

Grafik: Martin Schumann, KIT

Module, wie sie heute auf Dächern montiert werden, wandeln nur ein Fünftel des Lichts in Strom um, das bedeutet, dass etwa 80 Prozent der Sonnenenergie verloren gehen. Die Gründe für die hohen Verluste sind vielfältig.

Beispielsweise ist bis zu einem Zehntel der Fläche der Solarzellen mit sogenannten Kontaktfingern bedeckt, die den erzeugten Strom abführen. Dort, wo sich die Kontaktfinger befinden, kann das Licht die aktive Fläche der Solarzelle nicht erreichen, die Effizienz der gesamten Zelle sinkt.

„Unsere Modellexperimente haben gezeigt, dass die Tarnschicht die Kontaktfinger fast vollständig unsichtbar macht“, sagt Doktorand Martin Schumann vom Institut für Angewandte Physik am KIT, der die Experimente und Simulationen durchgeführt hat. Physiker des KIT um den Leiter des Forschungsprojekts Carsten Rockstuhl haben gemeinsam mit Partnern aus Aachen, Freiburg, Halle, Jena und Jülich die am KIT entworfene optische Tarnkappe weiterentwickelt, um das einfallende Licht um die Kontaktfinger der Solarzelle herumzuführen.

Normalerweise ist das Ziel der Tarnkappen-Forschung Objekte unsichtbar zu machen. Dafür wird Licht um das zu tarnende Objekt herum geleitet. Bei diesem Forschungsprojekt lag der Fokus aber nicht auf der Tarnung der Kontaktfinger an sich, sondern auf dem umgeleiteten Licht, das dank der Tarnkappe potenziell die aktive Fläche der Solarzelle erreicht und damit für diese nutzbar gemacht wird.

Um den Tarneffekt zu erzielen, gingen die Wissenschaftler zwei Möglichkeiten nach. Bei beiden Verfahren wird auf die Solarzelle eine Polymerschicht aufgebracht. Diese muss exakt berechnete optische Eigenschaften besitzen, nämlich entweder einen Brechungsindex, der vom Ort abhängt, oder eine spezielle Oberflächenform. Das zweite Konzept ist besonders vielversprechend, da es sich potenziell auch kostengünstig in die Massenproduktion von Solarzellen integrieren lässt. Die Oberfläche der Tarnschicht weist dabei Rillen auf, die entlang der Kontaktfinger ausgerichtet sind. So wird das einfallende Licht von den Kontaktfingern weg gebrochen und trifft schließlich auf die aktive Fläche der Solarzelle (siehe Abbildung).

Die Forscher haben in einem Modellexperiment und anhand von ausführlichen Simulationen gezeigt, dass sich beide Konzepte dazu eignen, die Kontaktfinger zu tarnen. Im nächsten Schritt ist geplant, die Tarnschicht auf eine Solarzelle aufzubringen, um die tatsächliche Effizienzsteigerung zu bestimmen. Die Physiker sind optimistisch, dass sich auch unter realen Bedingungen eine Verbesserung durch die Tarnschicht ergibt: „Wenn man eine derartige Schicht auf eine echte Solarzelle aufbringt, sollten sich die optischen Verluste durch die Kontaktfinger reduzieren und die Effizienz sollte um bis zu zehn Prozent steigen“, sagt Martin Schumann.

Veröffentlichung:
Martin F. Schumann, Samuel Wiesendanger, Jan Christoph Goldschmidt, Benedikt Bläsi, Karsten Bittkau, Ulrich W. Paetzold, Alexander Sprafke, Ralf B. Wehrspohn, Carsten Rockstuhl, and Martin Wegener, "Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes," Optica 2, 850-853 (2015)
DOI: 10.1364/OPTICA.2.000850

Weitere Informationen zur Tarnkappen-Forschung am KIT:
http://www.kit.edu/kit/pi_2014_15233.php und
http://www.kit.edu/kit/pi_2011_6866.php

Das Karlsruher Institut für Technologie (KIT) vereint als selbstständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft. Seine Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Weitere Informationen:

http://dx.doi.org/10.1364/OPTICA.2.000850

Monika Landgraf | Karlsruher Institut für Technologie
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Energiesysteme neu denken - Lastmanagement mit Blockheizkraftwerk
19.11.2019 | Fraunhofer-Gesellschaft

nachricht Klimaneutrale Energieversorgung der Zukunft
19.11.2019 | Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Im Focus: Der direkte Weg zur Phosphorverbindung: Regensburger Chemiker entwickeln Katalysemethode

Wissenschaftler finden effizientere und umweltfreundlichere Methode, um Produkte ohne Zwischenstufen aus weißem Phosphor herzustellen.

Pflanzenschutzmittel, Dünger, Extraktions- oder Schmiermittel – Phosphorverbindungen sind aus vielen Mitteln für den Alltag und die Industrie nicht...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Neu entwickeltes Glas ist biegsam

Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Weg entdeckt, um Killerzellen «umzuprogrammieren»

19.11.2019 | Biowissenschaften Chemie

Supereffiziente Flügel heben ab

19.11.2019 | Materialwissenschaften

Energiesysteme neu denken - Lastmanagement mit Blockheizkraftwerk

19.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics