Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Superschneller Wellenritt im Kristall: Elektronik auf Zeitskala einzelner Lichtschwingungen möglich

30.07.2015

Physikern der Universitäten Regensburg und Marburg ist es gelungen, die von einem starken Lichtfeld getriebene Bewegung von Elektronen in einem Halbleiter in extremer Zeitlupe zu beobachten. Dabei konnten sie ein grundlegend neues Quantenphänomen entschlüsseln. Die Ergebnisse der Wissenschaftler sind jetzt in der renommierten Fachzeitschrift „Nature“ veröffentlicht worden (DOI: 10.1038/nature14652).

Die rasante Entwicklung in der Elektronik mit Taktraten bis in den Gigahertz-Bereich hat unser Alltagsleben revolutioniert. Sie stellt jedoch auch Forscher weltweit vor eine zentrale Frage: Gibt es eine fundamentale Grenze für Schaltgeschwindigkeiten in der Elektronik?


Eine Lichtwelle beschleunigt Elektronen durch das Kristallgitter eines Festkörpers. Dabei überlagern sich Elektronen und senden ultrakurze Lichtblitze aus, die an den Feldmaxima der Welle auftreten.

Darstellung: B. Baxley (parttowhole.com) – Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung.

Alle elektronischen Bauelemente basieren auf der Bewegung von Elektronen in einem Festkörper durch ein elektrisches Feld. Wie aber realisiert man elektrische Felder, die schneller oszillieren als es die derzeitige Elektronik zulässt? Die Antwort ist naheliegend und faszinierend zugleich: Man nutzt das schnellste elektrische Wechselfeld, das in der Natur zu finden ist: eine Lichtwelle.

Forscher der Universität Regensburg um Prof. Dr. Rupert Huber (Lehrstuhl für Experimentalphysik) haben es in Kooperation mit Kollegen an der Universität Marburg erstmals geschafft, die durch einen starken Lichtimpuls im mittleren Infrarot getriebene Elektronenbewegung in einem Halbleiter direkt zu beobachten.

Das bahnbrechende Experiment an der Regensburger Terahertz-Hochfeldquelle erlaubt es damit zum ersten Mal, die von den beschleunigten Elektronen ausgesandte Strahlung - die sogenannten „Hohen Harmonischen“ – gleichzeitig mit dem treibenden Lichtfeld zu messen. Sie werden als ultrakurze Lichtblitze abgestrahlt, deren Emissionszeitpunkt nun mit einer Genauigkeit von einer Femtosekunde – dem millionsten Teil einer Milliardstel Sekunde – bestimmt werden konnte. Die Experimente an der Universität Regensburg wurden von eigens dafür entwickelten Vielteilchen-Simulationen der Marburger Physiker begleitet.

Experimente und Simulationen förderten ein überraschendes Verhalten der Elektronen zutage: Innerhalb einer extrem kurzen Zeitspanne nach ihrer Anregung durch das starke Lichtfeld ist die Energie der Elektronen zunächst nicht eindeutig bestimmt. Sie befinden sich vielmehr in oszillierenden Mischzuständen, die sich je nach Richtung des Lichtfeldes gegenseitig auslöschen oder verstärken.

Während quantenmechanische Effekte dieser Art meist nur auf besonders kleinen Längenskalen und bei minimalinvasiven Messmethoden sichtbar werden, verhält sich das neu entdeckte Phänomen genau umgekehrt: Je stärker das treibende Lichtfeld, desto ausgeprägter ist der Effekt.

Diese Beobachtungen geben nicht allein erstmalig Aufschluss über die genaue zeitliche Struktur der „Hohen Harmonischen“ aus Festkörpern. Sie sind auch richtungsweisend für Konzepte zur Entwicklung einer neuartigen „Lichtwellen-Elektronik“ – der Hochgeschwindigkeitselektronik der Zukunft.

Titel der Originalpublikation:
M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M.Kira und R. Huber, Real-time observation of interfering crystal electrons in high-harmonic generation, Nature 2015

Die Publikation nach Ablauf der Sperrfrist im Internet unter:
http://dx.doi.org/10.1038/nature14652

Ansprechpartner für Medienvertreter:
Prof. Dr. Rupert Huber
Universität Regensburg
Lehrstuhl für Experimentalphysik
Tel.: 0941 943-2070
rupert.huber@physik.uni-regensburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Energieversorgung in der Antarktis: Ist solarer Wasserstoff eine Alternative zu Erdöl?
22.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vom Lichtdoping für Gemüse bis zur Wasseraufbereitung
17.05.2019 | Technische Universität Berlin

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Effizientes Wertstoff-Recycling aus Elektronikgeräten

24.05.2019 | Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schweißen ohne Wärme

24.05.2019 | Maschinenbau

Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem

24.05.2019 | Biowissenschaften Chemie

Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken

24.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics