Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strom aus Plastik - Weltweit höchster Füllfaktor für flexible Module aus organischen Solarzellen

17.06.2010
Organische Solarzellen stehen für eine noch junge Technologie der Solarstromerzeugung. An ihrer Optimierung arbeitet das Freiburger Materialforschungszentrum (FMF) in enger Kooperation mit dem Fraunhofer Institut für Solare Energiesysteme ISE.

Jetzt ist es dem Forschungsteam um Dr. Uli Würfel gelungen, den weltweit besten Wert beim Füllfaktor für flexible organische Solarzellen zu erzielen. Der Füllfaktor ist ein wichtiges Qualitätsmerkmal, das neben dem Kurzschlussstrom und der offenen Klemmenspannung die Effizienz der Solarzelle und damit die Leistungsausbeute bestimmt.

Mit dem Ziel, leichte und flexible Solarzellen zu entwickeln, forscht das FMF an leitfähigen Kunststoffen für den Einsatz in der organischen Photovoltaik. Damit ist es in Zukunft möglich, neben der Versorgung mobiler Kleingeräte auch Rollos und Markisen mit einer dünnen, Strom erzeugenden Folie zu versehen und so neue Anwendungsgebiete zu erschließen.

Das interdisziplinäre Forschungsinstitut FMF führt in enger Kooperation mit dem Fraunhofer ISE Forschungsarbeiten zur organischen Photovoltaik durch. Die organische Photovoltaik ist im Vergleich zur bereits etablierten Silicium-Photovoltaik ein junges Forschungsgebiet, das sich in den letzten Jahren mit großer Dynamik weiterentwickelt hat. Im Gegensatz zu herkömmlichen, bereits auf dem Markt etablierten Solarzellen aus anorganischen Halbleitern nutzen organische Solarzellen für die Umwandlung des Sonnenlichts in elektrische Energie organische Materialien wie beispielsweise Polymere.

Wichtig für den Einsatz von Solarzellen ist neben dem Wirkungsgrad vor allem ihr Herstellungspreis. Hier besitzt die organische Photovoltaik ein enormes Potenzial, Kosten zu senken. Dies liegt zum einen daran, dass die verwendeten organischen Materialien sehr starke Absorber sind, das heißt es reicht bereits eine extrem dünne Schicht aus, das Sonnenlicht zu absorbieren, was wiederum einen niedrigen Materialverbrauch zur Folge hat. Zum anderen lässt sich diese Technologie mit Hilfe der äußerst effizienten Rolle-zu-Rolle Produktionstechnologie umsetzen. Daraus resultieren weitere Vorteile wie etwa die Möglichkeit, flexible Solarzellen mit geringem Gewicht herstellen zu können. Mit dem für die photoaktive Schicht eingesetzten Materialsystem werden auf kleinen Flächen üblicherweise Effizienzen von etwas mehr als 3 Prozent erreicht. Mit einem Modul-Wirkungsgrad von 2,5 Prozent auf der aktiven Fläche von mehr als 25 Quadratzentimeter konnte die elektrische Serienverschaltung erfolgreich demonstriert werden. Damit ist den Freiburger Forschern jetzt nicht nur eine vielversprechende Effizienz gelungen, gleichzeitig konnten sie mit 64 Prozent den für flexible organische Solarmodule weltweit höchsten Füllfaktor realisieren. Ebenfalls ein für die Kosten entscheidender Vorteil ist die Tatsache, dass die in Freiburg entwickelten organischen Solarzellen aufgrund ihres invertierten Aufbaus ohne die üblicherweise in organischen Solarzellen verwendete und sehr teure Indium-Zinnoxid Elektrode auskommen.

Die bislang im Labor gefertigten Module bestehen aus elf in Serie geschalteten Zellen und liefern eine Spannung von 6,5 Volt. Als Prototypen im Rahmen eines Projekts dienen sie zur Versorgung eines energieautarken Sensorsystems, das in Kleidung integriert werden soll. Verschiedene Sensoren zur Erfassung von Umwelt- und physiologischen Parametern können eingebunden werden.

Die Forschungsarbeiten zur organischen Photovoltaik am FMF werden gefördert durch das Bundesministerium für Bildung und Forschung (BMBF), die Deutsche Forschungsgemeinschaft (DFG) sowie die Fraunhofer-Gesellschaft (FhG). Zudem gibt es Kooperationen mit Industriepartnern.

Karin Schneider | Fraunhofer-Institut
Weitere Informationen:
http://www.ise.fraunhofer.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Fraunhofer IZM setzt das E-Auto auf die Überholspur
11.10.2019 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht TU Ilmenau nimmt deutschlandweit einzigartigen Echtzeit-Simulator für Energiesysteme in Betrieb
10.10.2019 | Technische Universität Ilmenau

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics