Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Siliziumtechnik zur molekularen Elektronik

17.02.2010
Wissenschaftler wollen die Brücke zur Mikroelektronik der Zukunft schlagen

Kann Elektronik noch kleiner und leistungsfähiger werden? Forscher am Institut für Halbleitertechnik an der Technischen Universität Braunschweig entwickeln gemeinsam mit Kollegen an der Universität Princeton (New Jersey, USA) und an der TU München neuartige Bauelemente für zukünftige Computerchip-Generationen.

Die kleinsten elektronischen Bauelemente haben heute Komponenten mit Abmessungen im Bereich weniger Nanometer erreicht (ein Nanometer ist der Millionste Teil eines Millimeters). Sie finden sich z. B. als Transistoren bereits milliardenfach in Computern. Die Silizium-Technologie stößt damit - was die Miniaturisierung angeht - langsam an ihre Grenzen. Weltweit suchen Forscher daher intensiv nach neuartigen Materialien und Bauelementen, welche in den kommenden Jahren und Jahrzehnten die heutige Siliziumtechnik ergänzen oder irgendwann sogar ersetzen könnten.

Als sehr aussichtsreich gelten organische Moleküle, also künstlich hergestellte, chemische Nanoteilchen, welche die Aufgaben konventioneller Bauelemente wie Dioden, Schalter oder Transistoren übernehmen und durch neuartige Funktionen erweitern würden. Rein organische elektronische Schaltkreise werden aber in den nächsten Jahren noch Utopie bleiben.

Forscher aus Braunschweig um Prof. Marc Tornow wollen nun eine Brücke von der heutigen Siliziumtechnik zur zukünftigen molekularen Elektronik schlagen. "Unser Ziel ist es, Siliziumkontakte im Nanometerbereich herzustellen, mit denen die Moleküle elektrisch angeschlossen werden können", erläutert Tornow. Ihre Partner aus der organischen Chemie der Universität Princeton (Prof. Jeffrey Schwartz, Prof. Steven Bernasek) bringen die speziell hergestellten, leitfähigen Moleküle in das Projekt ein, welche sich als hochgeordnete Schichten auf Silizium abscheiden lassen. Diese Funktionalisierung der Oberfläche erfolgt in enger Kooperation mit Wissenschaftlern des Walter-Schottky-Instituts der TU München (Prof. Gerhard Abstreiter, Dr. Anna Cattani-Scholz), die ebenfalls Partner im Projekt sind.

Die Arbeiten werden an der TU Braunschweig mit rund 220.000 Euro durch die Deutsche Forschungsgemeinschaft gefördert. Im Rahmen des dreijährigen, bilateralen Projekts erhalten die US-amerikanischen Partner eine parallele Förderung durch die National Science Foundation.

Kontakt:
Prof. Dr. Marc Tornow
Institut für Halbleitertechnik
Technische Universität Braunschweig
Hans-Sommer-Str. 66, 38106 Braunschweig
Tel.: +49 (0) 531-391 3821
m.tornow@tu-braunschweig.de

Dr. Elisabeth Hoffmann | idw
Weitere Informationen:
http://www.iht.tu-bs.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern
03.07.2020 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Elektronen auf der Überholspur
03.07.2020 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics