Sichere Lithium-Ionenbatterie aus Keramik

Fertig konfektionierte Festkörperbatterie (Kathodenmaterial Lithium-Kobalt-Oxid, Elektrolyt: teilsubstituiertes Lithium-Lanthan-Zirkonat, Anode: Lithium-Metall) Forschungszentrum Jülich

Die Jülicher Feststoff-Lithium-Ionenbatterie hat es in sich, auch wenn man ihr Potenzial nicht unbedingt auf den ersten Blick erkennt. Die Zelle wurde im Labor über 350-mal entladen und wieder aufgeladen. Sie ist der Vorläufer einer neuen Generation von Lithium-Ionen-Akkus, in denen anstelle der brennbaren und oft giftigen Flüssigkeiten ein fester Elektrolyt zum Einsatz kommt.

Diese Bauweise bringt viele Vorteile mit sich: „Die Zellen können bei Unfällen und Fehlern nicht in Brand geraten und nicht auslaufen. Sie könnten eine deutlich längere Lebensdauer haben und sind auf jeden Fall weniger temperaturempfindlich“, erläutert Prof. Olivier Guillon vom Jülicher Institut für Energie- und Klimaforschung.

Lithium-Ionenbatterien sind insbesondere für mobile Anwendungen wie tragbare Elektrogeräte und Fahrzeuge die erste Wahl. Grund ist in erster Linie ihre hohe Energiedichte. „Mit Feststoff-Lithium-Ionenbatterien lässt sich die Energiedichte noch deutlich steigern, denn die Zellen lassen sich übereinander stapeln“, so der Leiter des Bereichs Werkstoffsynthese und Herstellungsverfahren (IEK-1).

Anders als herkömmliche Akkus mit Flüssig-Elektrolyt benötigen die unbedenklichen und mechanisch unempfindlichen Festkörper-Batterien keine platzraubenden Kühl- und Schutzvorrichtungen. Selbst die unvermeidlich auftretenden Stöße und Vibrationen bei Anwendungen im Automobilbereich verkraften sie ohne aufwendige Stützkonstruktionen, die für konventionelle Flüssigzellbatterien erforderlich sind.

Spezialkeramik als Elektrolyt

Aufgabe des Elektrolyten ist es, Lithium-Ionen während des Entladens von der Anode zur Kathode zu leiten und die beiden Pole gleichzeitig elektrisch zu isolieren. Anstelle einer Flüssigkeit kann auch ein Festkörper diese Funktion übernehmen. Dafür geeignete Materialien weisen Leerstellen in ihrer atomaren Gitterstruktur auf. Lithium-Ionen können sie besetzen und sich so „hüpfend“ durch den Festkörper bewegen.

„Der Mechanismus läuft allerdings etwas langsamer ab als die Diffusionsvorgänge innerhalb eines flüssigen Elektrolyten. Das erhöht den Widerstand für den Ionentransport, was die abrufbare Leistungsdichte der Batterie verringert“, erläutert Dr. Sven Uhlenbruck. „Diese schlechtere spezifische Leitfähigkeit lässt sich aber im Prinzip durch die Ausführung des Elektrolyten als dünne Schicht ausgleichen. Unser Ziel ist es, die Dicke des Feststoffelektrolyten auf wenige Mikrometer zu reduzieren, während die Elektroden in konventionellen Zellen mit Flüssig-Elektrolyt rund 30 Mikrometer auseinander liegen“, erklärt der Jülicher Physiker.

Grenzfläche im Fokus

Eine größere technische Schwierigkeit stellt dagegen die Gestaltung der Grenzfläche zwischen den festen Elektroden und dem ebenfalls festen Elektrolyten dar. Einen flüssigen Elektrolyten können feinstrukturierte Elektroden wie ein Schwamm aufnehmen. Doch zwei angrenzende Festkörper lassen sich nicht so einfach lückenlos miteinander verbinden. Der Übergangswiderstand zwischen Elektroden und Elektrolyt fällt entsprechend höher aus. „Durch Abstimmung der Herstellungsverfahren ist es uns gelungen, den Gesamtinnenwiderstand der Zelle von 20 Kiloohm auf 2 Kiloohm pro Quadratzentimeter zu reduzieren“, berichtet Sven Uhlenbruck. Die Forschung geht weiter. Ziel ist es, durch Verringerung der Elektrolytdicke die Werte heutiger Lithium-Ionenbatterien von 50 Ohm pro Quadratzentimeter zu erreichen, wobei die Energiedichte aufgrund der Materialeinsparung dann deutlich höher ausfallen dürfte – schöne Aussichten also für alle mobile Geräten, deren Laufzeit sich dadurch beträchtlich verlängern ließe.

Die detaillierten Ergebnisse wurden in der März-Ausgabe des Fachmagazins „Nachrichten aus der Chemie“ und in der Fachzeitschrift „Journal of Power Sources“ (DOI: 10.1016/j.jpowsour.2015.02.003) veröffentlicht.

Originalpublikationen
Batterien mit Festkörperelektrolyt
D. Weber, S. Uhlenbruck
Physikalische Chemie (2015), Nachr. Chem., 63: 315–326, DOI: 10.1002/nadc.201590094
Abstract: http://onlinelibrary.wiley.com/doi/10.1002/nadc.201590094/abstract

Influence of titanium nitride interlayer on the morphology, structure and electrochemical performance of magnetron-sputtered lithium iron phosphate thin films
A. Bünting, S. Uhlenbruck, C. Dellen, M. Finsterbusch, C.-L. Tsai, D. Sebold, H.P. Buchkremer, R. Vaßen
Journal of Power Sources, Volume 281, 1 May 2015, Pages 326-33, doi:10.1016/j.jpowsour.2015.02.003
Article: http://www.sciencedirect.com/science/article/pii/S0378775315002268

Weitere Informationen:
Forschung am Institut für Energie- und Klimaforschung, Bereich, Werkstoffsynthese und Herstellungsverfahren (IEK-1): http://www.fz-juelich.de/iek/iek-1/DE/Home/home_node.html

Ansprechpartner:
Dr. Sven Uhlenbruck, Institut für Energie- und Klimaforschung, Bereich, Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Tel. + 49 2461 61-5984
s.uhlenbruck@fz-juelich.de

Prof. Dr. Olivier Guillon, Institut für Energie- und Klimaforschung, Bereich, Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Tel. + 49 2461 61-5181
o.guillon@fz-juelich.de

Pressekontakt:
Tobias Schlößer, Unternehmenskommunikation
Tel. +49 2461 61-4771
t.schloesser@fz-juelich.de

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-03-13Festst…

Media Contact

Annette Stettien Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer