Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien

21.06.2018

Mit Mikroelektroden können elektrische Signale direkt am Gehirn oder Herz gemessen werden. Für solche Anwendungen werden jedoch weiche Materialien benötigt, auf denen die Elektroden bislang nur mit großem Aufwand angebracht werden konnten. Einem Team der Technischen Universität München (TUM) ist es jetzt gelungen, sie direkt auf verschiedene weiche Oberflächen zu drucken.

Mit vereinten Kräften ist es einem Team der TU München und des Forschungszentrums Jülich gelungen, ein Gummibärchen zu bedrucken. Was zunächst bestenfalls nach einer Spielerei klingt, könnte die medizinische Diagnostik verändern.


Mikroelektroden-Arrays auf Gelatine: Ein Team um Bernhard Wolfrum, Professor für Neuroelektronik an der Technischen Universität München (TUM), hat die Sensoren auf Gummi-Süßigkeiten gedruckt.

N. Adly / TUM

Zum einen haben die Wissenschaftlerinnen und Wissenschaftler um Prof. Bernhard Wolfrum kein Bild oder einen Schriftzug gedruckt, sondern ein Mikroelektroden-Array. Diese Bauteile bestehen aus einer großen Zahl an Elektroden und können Veränderungen der elektrischen Spannung in Zellen messen. Diese treten beispielsweise bei der Aktivität von Nerven- oder Muskelzellen auf.

Zum anderen haben Gummibärchen eine Eigenschaft, die für den Einsatz von Miroelektroden-Arrays an lebenden Zellen besonders wichtig sind: Sie sind weich. Mikroelektroden-Arrays gibt es schon lange. In ihrer ursprünglichen Form bestehen sie aus harten Materialien wie Silizium. Im Kontakt mit lebenden Zellen ergeben sich daraus verschiedene Nachteile. Im Labor verändern sich deshalb Form und Zusammenschluss der Zellen. Im Körper können sie Entzündungen auslösen und die Funktionsweise von Organen beeinträchtigen.

Rapid Prototyping mit Tintenstrahldrucker

Mit Elektroden-Arrays auf weichen Materialien lassen sich diese Probleme vermeiden. Dementsprechend intensiv wird an ihnen geforscht. Bislang wird dabei meist auf traditionelle Methoden gesetzt, die relativ langwierig sind und auf kostspielige Speziallabore angewiesen sind. „Druckt man die Elektroden stattdessen, kann man vergleichsweise schnell und günstig einen Prototyp herstellen und ihn ebenso problemlos überarbeiten“, sagt Bernhard Wolfrum, Professor für Neuroelektronik an der TUM. „Solch ein ‚Rapid Prototyping‘ erlaubt ganz neue Arbeitsweisen.“

Wolfrum und sein Team nutzen eine Hightech-Variante des Tintenstrahldruckers. Die Elektroden selbst werden mit kohlenstoffhaltiger Flüssigkeit gedruckt. Damit die Sensoren keine ungewollten Signale aufzeichnen, wird über die Kohlenstoffbahnen eine neutrale Schutzschicht aufgetragen.

Materialien für verschiedene Anwendungen

Das Verfahren erprobten die Forscherinnen und Forscher an verschiedenen Materialien, darunter das weiche Silikon PDMS (kurz für Polydimethylsiloxan), die häufig in biologischen Experimenten verwendete Substanz Agar und schließlich Gelatine, unter anderem in Form eines geschmolzenen und wieder erstarrten Gummibärchens. Jeder dieser Stoffe hat Eigenschaften, die sich für bestimmte Anwendungen besonders eignen. Beispielsweise können mit Gelatine beschichtete Implantate, unerwünschte Reaktionen im Gewebe verringern.

Dass die Sensoren zuverlässige Werte liefern, konnte das Team durch Experimente mit Zellkulturen nachweisen. Mit einer durchschnittlichen Breite von 30 Mikrometern ermöglichen sie darüber hinaus Messungen an einzelnen oder wenigen Zellen, was mit etablierten Druckmethoden schwierig zu erreichen ist.

„Die Schwierigkeit besteht im Feintuning aller Komponenten – sowohl der technischen Einstellungen des Druckers als auch der Zusammensetzung der Tinte“, sagt Nouran Adly, Erstautorin der Studie. „Im Fall von PDMS mussten wir beispielsweise auf einer von uns entwickelte Vorbehandlung zurückgreifen, damit die Tinte überhaupt auf der Oberfläche hält.“

Vielfältige Einsatzmöglichkeiten

Gedruckte weiche Mikroelektroden-Arrays könnten in verschiedenen Bereichen zum Einsatz kommen. Sie eignen sich nicht nur für einen Rapid-Prototyping-Ansatz in der Forschung, sondern könnten auch die Behandlung von Patientinnen und Patienten verändern. „In Zukunft könnten ähnliche weiche Strukturen beispielsweise Nerven- oder Herzfunktion im Körper überwachen oder sogar als Schrittmacher dienen“, sagt Prof. Wolfrum. Derzeit arbeitet er mit seinem Team zum einen daran, auch komplexere, dreidimensionale Mikroelektroden-Arrays zu drucken. Zum anderen erforschen sie druckbare Sensoren, die nicht auf Spannungsschwankungen, sondern selektiv auf chemische Substanzen reagieren.

Publikation:

N. Adly, S. Weidlich, S. Seyock, F. Brings, A.Yakushenko, A. Offenhäusser, B. Wolfrum. “Printed Microelectrode Arrays on Soft Materials: From PDMS to Hydrogels.” Npj Flexible Electronics 2:1 (2018). DOI:10.1038/s41528-018-0027-z.

Volltext (Open Access): https://www.nature.com/articles/s41528-018-0027-z

Mehr Informationen:

Prof. Wolfrum forscht an der Munich School of BioEngineering (MSB). Dieses interdisziplinäre Forschungszentrum der TUM ist europaweit die thematisch umfassendste universitäre Einrichtung für das Schnittfeld von Medizin, Ingenieur- und Naturwissenschaften.
Munich School of BioEngineering (MSB): https://www.bioengineering.tum.de/
Professur für Neuroelektronik: http://www.nel.ei.tum.de/

Hochauflösende Bilder:

https://mediatum.ub.tum.de/1446441

Kontakt:

Prof. Dr. Bernhard Wolfrum
Professur für Neuroelektronik
Munich School of BioEngineering
Fakultät für Elektrotechnik und Informationstechnik
Technische Universität München (TUM)
Tel.: +49 (89) 289 – 10887
bernhard.wolfrum@tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Berührungsgeschützt, kompakt, einfach: Rittal erweitert Board-Technologie
15.02.2019 | Rittal GmbH & Co. KG

nachricht Fraunhofer-Energieforscher entwickeln KI-basierte Verfahren für hochautomatisierte Stromnetze
12.02.2019 | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen.

In heutigen Datenspeichern müssen magnetische Domänen mit Hilfe eines externen Magnetfeld umgeschaltet werden, welches durch elektrischen Strom erzeugt wird....

Im Focus: Regensburger Physiker beobachten, wie es sich Elektronen gemütlich machen

Und können dadurch mit ihrer neu entwickelten Mikroskopiemethode Orbitale einzelner Moleküle in verschiedenen Ladungszuständen abbilden. Die internationale Forschergruppe der Universität Regensburg berichtet über ihre Ergebnisse unter dem Titel “Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators” in der weltweit angesehenen Fachzeitschrift ,,Nature‘‘.

Sie sind die Grundbausteine der uns umgebenden Materie - Atome und Moleküle. Die Eigenschaften der Materie sind oftmals jedoch nicht durch diese Bausteine...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: Universität Konstanz gewinnt neue Erkenntnisse über die Entwicklung des Immunsystems

Wissenschaftler der Universität Konstanz identifizieren Wettstreit zwischen menschlichem Immunsystem und bakteriellen Krankheitserregern

Zellbiologen der Universität Konstanz publizieren in der Fachzeitschrift „Current Biology“ neue Erkenntnisse über die rasante evolutionäre Anpassung des...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zum Thema Desinformation in Online-Medien

15.02.2019 | Veranstaltungen

FfE-Energietage 2019 - Die Energiewelt heute und morgen vom 1. bis 4. April 2019 in München

15.02.2019 | Veranstaltungen

Deutscher Fachkongress für kommunales Energiemanagement: Fokus Energie – Architektur – BauKultur

13.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Katalysatoren - Fluktuationen machen den Weg frei

15.02.2019 | Biowissenschaften Chemie

Berührungsgeschützt, kompakt, einfach: Rittal erweitert Board-Technologie

15.02.2019 | Energie und Elektrotechnik

Wie kann digitales Lernen gelingen? Lern-Prototypen werden auf der didacta vorgestellt

15.02.2019 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics