Schnell und stark: Neue 2D-Materialien mit Talent zur Energiespeicherung

Durch Röntgenanalysen zeigen sich Veränderungen in der chemischen Struktur im Vergleich von reinen MXene (mitte) und MXene mit zwischengelagertem Harnstoff (rechts). HZB/Martin Künsting

An BESSY II haben sie analysiert, welche Veränderungen der MXene-Oberflächenchemie nach der Harnstoffeinlagerung dafür verantwortlich sind.

Um elektrische Energie zu speichern, gibt es unterschiedliche Lösungen: Elektrochemische Batterien auf Lithium-Basis speichern große Energiemengen, benötigen aber lange Ladezeiten. Superkondensatoren hingegen können elektrische Energie extrem schnell aufnehmen oder abgeben – speichern aber wesentlich weniger elektrische Energie.

Pseudokondensatoren aus MXene

Eine weitere Option ist seit 2011 in Sicht: An der Drexel University, USA, wurde eine neue Klasse von 2D-Materialien entdeckt, die enorme Ladungsmengen speichern können. Es handelt sich um so genannte MXene, Nanoblätter aus Ti3C2Tx -Molekülen, die ähnlich wie Graphen ein zweidimensionales Netzwerk bilden.

Während Titan (Ti) und Kohlenstoff (C) Elemente sind, bezeichnet Tx verschiedene chemische Gruppen, die die Oberfläche versiegeln, zum Beispiel OH-Gruppen. MXene sind hochleitfähige Materialien mit hydrophiler Oberfläche. In Wasser bilden sie Dispersionen, die an schwarze Tinte erinnern.

Ti3C2Tx kann so viel Energie speichern wie eine Batterie, kann aber innerhalb von Zehntelsekunden geladen oder entladen werden. Während ähnlich schnelle (oder schnellere) Superkondensatoren ihre Energie durch elektrostatische Adsorption von elektrischen Ladungen absorbieren, wird die Energie in MXenen in chemischen Bindungen an ihren Oberflächen gespeichert. Diese Art der Energiespeicherung ist viel effizienter.

Weiches Röntgenlicht zeigt, was passiert

In Zusammenarbeit mit der Gruppe um Yuri Gogotsi an der Drexel-Universität haben die HZB-Wissenschaftler Dr. Tristan Petit und Ameer Al-Temimy nun erstmals weiche Röntgenabsorptionsspektroskopie an BESSY II genutzt, um MXene-Proben an den Experimentierstationen LiXEdrom und X-PEEM zu untersuchen.

Sie konnten die chemische Umgebung von MXene-Oberflächengruppen im Vakuum, aber auch direkt in Wasserumgebung analysieren. Sie untersuchten Proben aus reinen MXenen und aus MXenen mit eingelagerten Harnstoffmolekülen und fanden dramatische Unterschiede.

Harnstoff erhöht die Kapazität

Das Vorhandensein von Harnstoffmolekülen verändert die elektrochemischen Eigenschaften von MXenen signifikant. Die Flächenkapazität erhöhte sich auf 1100 mF/cm2, was 56 Prozent höher ist als bei ähnlich präparierten reinen Ti3C2Tx -Elektroden.

Die XAS-Analysen bei BESSY II zeigten, dass sich die Oberflächenchemie durch die Anwesenheit der Harnstoffmoleküle verändert. „Am X-PEEM konnten wir auch den Oxidationszustand der Ti-Atome auf den Ti3C2Tx -Oberflächen beobachten. Dieser Oxidationszustand erhöhte sich durch die Anwesenheit von Harnstoff, was die Speicherung von mehr Energie erleichtern könnte“, sagt Ameer Al-Temimy, der die Messungen im Rahmen seiner Doktorarbeit durchführte.

Ameer Al-Temimy
E-Mail: ameer.al-temimy@helmholtz-berlin.de

Dr. Tristan Petit
E-Mail: tristan.petit@helmholtz-berlin.de

https://pubs.acs.org/doi/full/10.1021/acs.jpcc.9b11766
DOI: 10.1021/acs.jpcc.9b11766

https://www.helmholtz-berlin.de/hzbin/news_seite?nid=21128;sprache=de;seitenid=9…

Media Contact

Dr. Ina Helms Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Merkmale des Untergrunds unter dem Thwaites-Gletscher enthüllt

Ein Forschungsteam hat felsige Berge und glattes Terrain unter dem Thwaites-Gletscher in der Westantarktis entdeckt – dem breiteste Gletscher der Erde, der halb so groß wie Deutschland und über 1000…

Wasserabweisende Fasern ohne PFAS

Endlich umweltfreundlich… Regenjacken, Badehosen oder Polsterstoffe: Textilien mit wasserabweisenden Eigenschaften benötigen eine chemische Imprägnierung. Fluor-haltige PFAS-Chemikalien sind zwar wirkungsvoll, schaden aber der Gesundheit und reichern sich in der Umwelt an….

Das massereichste stellare schwarze Loch unserer Galaxie entdeckt

Astronominnen und Astronomen haben das massereichste stellare schwarze Loch identifiziert, das bisher in der Milchstraßengalaxie entdeckt wurde. Entdeckt wurde das schwarze Loch in den Daten der Gaia-Mission der Europäischen Weltraumorganisation,…

Partner & Förderer