Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schichten statt Mischen

17.11.2015

Jülich-Aachener Forscherteam verbessert Energieeffizienz topologischer Isolatoren

Eine zu starke Erwärmung von Computerchips ist ein großes Hindernis für die Entwicklung schnellerer und leistungsfähigerer Rechner und Mobiltelefone. Abhilfe verspricht eine erst vor wenigen Jahren entdeckte Materialklasse: topologische Isolatoren, die Strom mit geringerem Widerstand und weniger Wärmeentwicklung leiten als herkömmliche Materialien.


Durch Variation der Schichtdicke von Halbleiter-Sandwiches aus Silizium, einem n-Halbleiter, und einem p-Halbleiter, lassen sich topologische Isolatoren maßschneidern.

Copyright: Forschungszentrum Jülich


Ein mathematischer Kniff – eine Abbildung der Energieniveaus der Oberflächenelektronen im reziproken Raum – zeigt den Bereich maximaler Energieeffizienz an.

Copyright: Forschungszentrum Jülich

Ein Team aus Jülich und Aachen hat eine Möglichkeit gefunden, die gewünschten Leitungseigenschaften solcher Materialien genauer und zuverlässiger einzustellen als es bisher möglich war (Nature Communications).

So genannte „topologische“ Materialien besitzen an ihren Oberflächen andere physikalische Eigenschaften als im Inneren. Topologische Isolatoren sind im Materialinneren praktisch Isolatoren, aber an ihren Oberflächen und Rändern leiten sie elektrischen Strom fast wie auf Schienen: schneller, mit geringerem Widerstand und weniger Wärmeentwicklung als herkömmliche Materialien.

Zusätzlich fungieren die Schienen für Elektronen als Einbahnstraßen. Der Eigendrehimpuls der Elektronen – der sogenannte Spin – bestimmt, in welche Richtung die Elektronen fließen können. Auch diese Materialeigenschaft ist nützlich für die Informationsverarbeitung und könnte die Entwicklung neuer spintronischer Bauelemente ermöglichen.

Forscher des Jülicher Peter Grünberg Instituts und der RWTH Aachen zeigten nun, wie sich die Leitfähigkeit und der Energiebedarf dieser Materialien optimieren lassen. Ihr Erfolgsrezept lautet stark vereinfacht: schichten statt mischen. Prof. Detlev Grützmacher vom Peter Grünberg Institut hatte die entscheidende Idee:

„Anstatt zwei Halbleiter unterschiedlichen Typs wie üblich zu legieren, um daraus einen topologischen Isolator zu gewinnen, haben wir mittels Molekularstrahlepitaxie beide Halbleiter Atomschicht für Atomschicht aufeinander geschichtet, dies wiederum auf einer Siliziumträgerschicht.“ Molekularstrahlepitaxie ist eine hochpräzise Methode, dünne kristalline Schichten herzustellen, und wird zunehmend nicht mehr nur in der Forschung sondern auch zur industriellen Produktion von Halbleiterstrukturen eingesetzt.

Auf diese Weise konnten die Forscher den atomaren Aufbau exakt kontrollieren, was sie mit ultrahochauflösender Elektronenmikroskopie dokumentierten. „Die perfekte atomare Zusammensetzung topologischer Isolatoren ist ganz entscheidend für die elektronischen Eigenschaften und damit die Energieeffizienz, aber bei Legierungen nur schwer kontrollierbar“, erläutert Dr. Lukasz Plucinski vom Peter Grünberg Institut.

Welche Schichtdicken mit optimalen Leitungseigenschaften einhergehen, fanden die Forscher mit der Technik der winkelaufgelösten Photoemissionsspektroskopie heraus. Dabei werden Proben mit Photonen beschossen, die Elektronen aus dem Material herauslösen. Deren Energie und Austrittswinkel werden gemessen und geben Auskunft über die Energie und die Verteilung der Elektronen an der Oberfläche der Probe.

Topologische Isolatoren können grundsätzlich auch mit Hilfe externer elektrischer Felder in Halbleiterlegierungen und anderen Materialien erzeugt werden. Bei der Sandwichmethode, die die Wissenschaftler im Rahmen der Jülich Aachen Research Alliance, Sektion „Future Information Technology“, gemeinsam entwickelt haben, ist dieser technische Aufwand unnötig und das Trägermaterial Silizium vereinfacht eine spätere Integration in Anwendungen.

Im vom Jülicher Peter Grünberg Institut koordinierten Virtuellen Institut für topologische Isolatoren (VITI) erforschen Wissenschaftler darüber hinaus weitere Nutzungsmöglichkeiten des neuen Materials in der Grundlagenforschung. So könnte es zum Beispiel den Nachweis neuer bisher nur theoretisch vorhergesagter Quantenphänomene ermöglichen, etwa von Quasipartikeln aus Elektronen und Leitungslöchern, die ein so genanntes topologisches Exziton-Kondensat bilden.

Originalveröffentlichung:
Realization of a vertical topological p-n junction in epitaxial Sb2Te3/Bi2Te3 heterostructures;
Markus Eschbach, Ewa Mlynczak, Jens Kellner, Jörn Kampmeier, Martin Lanius, Elmar Neumann, Christian Weyrich, Mathias Gehlmann, Pika Gospodaric, Sven Döring, Gregor Mussler, Nataliya Demarina, Martina Luysberg, Gustav Bihlmayer, Thomas Schäpers, Lukasz Plucinski, Stefan Blügel, Markus Morgenstern, Claus M. Schneider, Detlev Grützmacher;
Nature Communications (2015), DOI: 10.1038/ncomms9816

Weitere Informationen:
Forschungszentrum Jülich: www.fz-juelich.de
Pressemitteilung vom 29.2.2012 „Schienen für elektrischen Strom“: www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2012/12-06-29Virtuelles_Institut.html?nn=570024
Pressemitteilung vom 18.8.2011 „Blick in bisher ungeahnte Tiefen“: www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2011/11-08-18photoemissionsspektroskopie.html
Pressemitteilung vom 12.2.2009: „“Science": Neuartiger Quanteneffekt direkt beobachtet und erklärt“: www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2009/index1d0f_htm.html?nn=719084
Peter Grünberg Institut – Quanten-Theorie der Materialien (PGI-1): www.fz-juelich.de/pgi/pgi-1/DE/Home/home_node.html
Peter Grünberg Institut – Theoretische Nanoelektronik (PGI-2): www.fz-juelich.de/pgi/pgi-2/DE/Home/home_node.html
Peter Grünberg Institut – Mikrostrukturforschung (PGI-5): www.fz-juelich.de/pgi/pgi-5/DE/Home/home_node.html
Peter Grünberg Institut – Elektronische Eigenschaften (PGI-6): www.fz-juelich.de/pgi/pgi-6/
Peter Grünberg Institut – Halbleiter-Nanoelektronik (PGI-9): www.fz-juelich.de/pgi/pgi-9/DE/Home/home_node.html
Arbeitsgruppe Prof. Markus Morgenstern an der RWTH Aachen, II. Physikalisches Institut B: www.institut2b.physik.rwth-aachen.de/
Jülich Aachen Research Alliance, Sektion FIT (Fundamentals of Future Information Technology): www.jara.org/de/research/jara-fit/

Ansprechpartner:
Dr. Lukasz Plucinski, Forschungszentrum Jülich, Elektronische Eigenschaften (PGI-6), Tel. 02461 61-6684, E-Mail: l.plucinski@fz-juelich.de

Prof. Dr. Detlev Grützmacher, Forschungszentrum Jülich, Halbleiter-Nanoelektronik (PGI-9), Tel. 02461 61-2340, E-Mail: d.gruetzmacher@fz-juelich.de
Dr. Gustav Bihlmayer, Forschungszentrum Jülich, Quanten-Theorie der Materialien (PGI-1), Tel. 02461 61-4677, E-Mail: g.bihlmayer@fz-juelich.de
Prof. Dr. Markus Morgenstern, RWTH Aachen, II. Physikalisches Institut B, Tel. 0241 80-27076, E-Mail: mmorgens@physik.rwth-aachen.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-11-17schich...

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ein magnetisches Gedächtnis für den Computer
12.11.2018 | Technische Universität Wien

nachricht Neue Rekorde bei Perowskit-Silizium-Tandemsolarzellen durch verbesserten Lichteinfang
12.11.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Im Focus: Datensicherheit: Aufbruch in die Quantentechnologie

Den Datenverkehr noch schneller und abhörsicher machen: Darauf zielt ein neues Verbundprojekt ab, an dem Physiker der Uni Würzburg beteiligt sind. Das Bundesforschungsministerium fördert das Projekt mit 14,8 Millionen Euro.

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

MagicMoney: Offline bezahlen – mit deinem Smartphone

13.11.2018 | Wirtschaft Finanzen

5G sichert Zukunft von Industrie 4.0 – DFKI mit der SmartFactoryKL auf der SPS IPC Drives

13.11.2018 | Messenachrichten

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics