Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schichten statt Mischen

17.11.2015

Jülich-Aachener Forscherteam verbessert Energieeffizienz topologischer Isolatoren

Eine zu starke Erwärmung von Computerchips ist ein großes Hindernis für die Entwicklung schnellerer und leistungsfähigerer Rechner und Mobiltelefone. Abhilfe verspricht eine erst vor wenigen Jahren entdeckte Materialklasse: topologische Isolatoren, die Strom mit geringerem Widerstand und weniger Wärmeentwicklung leiten als herkömmliche Materialien.


Durch Variation der Schichtdicke von Halbleiter-Sandwiches aus Silizium, einem n-Halbleiter, und einem p-Halbleiter, lassen sich topologische Isolatoren maßschneidern.

Copyright: Forschungszentrum Jülich


Ein mathematischer Kniff – eine Abbildung der Energieniveaus der Oberflächenelektronen im reziproken Raum – zeigt den Bereich maximaler Energieeffizienz an.

Copyright: Forschungszentrum Jülich

Ein Team aus Jülich und Aachen hat eine Möglichkeit gefunden, die gewünschten Leitungseigenschaften solcher Materialien genauer und zuverlässiger einzustellen als es bisher möglich war (Nature Communications).

So genannte „topologische“ Materialien besitzen an ihren Oberflächen andere physikalische Eigenschaften als im Inneren. Topologische Isolatoren sind im Materialinneren praktisch Isolatoren, aber an ihren Oberflächen und Rändern leiten sie elektrischen Strom fast wie auf Schienen: schneller, mit geringerem Widerstand und weniger Wärmeentwicklung als herkömmliche Materialien.

Zusätzlich fungieren die Schienen für Elektronen als Einbahnstraßen. Der Eigendrehimpuls der Elektronen – der sogenannte Spin – bestimmt, in welche Richtung die Elektronen fließen können. Auch diese Materialeigenschaft ist nützlich für die Informationsverarbeitung und könnte die Entwicklung neuer spintronischer Bauelemente ermöglichen.

Forscher des Jülicher Peter Grünberg Instituts und der RWTH Aachen zeigten nun, wie sich die Leitfähigkeit und der Energiebedarf dieser Materialien optimieren lassen. Ihr Erfolgsrezept lautet stark vereinfacht: schichten statt mischen. Prof. Detlev Grützmacher vom Peter Grünberg Institut hatte die entscheidende Idee:

„Anstatt zwei Halbleiter unterschiedlichen Typs wie üblich zu legieren, um daraus einen topologischen Isolator zu gewinnen, haben wir mittels Molekularstrahlepitaxie beide Halbleiter Atomschicht für Atomschicht aufeinander geschichtet, dies wiederum auf einer Siliziumträgerschicht.“ Molekularstrahlepitaxie ist eine hochpräzise Methode, dünne kristalline Schichten herzustellen, und wird zunehmend nicht mehr nur in der Forschung sondern auch zur industriellen Produktion von Halbleiterstrukturen eingesetzt.

Auf diese Weise konnten die Forscher den atomaren Aufbau exakt kontrollieren, was sie mit ultrahochauflösender Elektronenmikroskopie dokumentierten. „Die perfekte atomare Zusammensetzung topologischer Isolatoren ist ganz entscheidend für die elektronischen Eigenschaften und damit die Energieeffizienz, aber bei Legierungen nur schwer kontrollierbar“, erläutert Dr. Lukasz Plucinski vom Peter Grünberg Institut.

Welche Schichtdicken mit optimalen Leitungseigenschaften einhergehen, fanden die Forscher mit der Technik der winkelaufgelösten Photoemissionsspektroskopie heraus. Dabei werden Proben mit Photonen beschossen, die Elektronen aus dem Material herauslösen. Deren Energie und Austrittswinkel werden gemessen und geben Auskunft über die Energie und die Verteilung der Elektronen an der Oberfläche der Probe.

Topologische Isolatoren können grundsätzlich auch mit Hilfe externer elektrischer Felder in Halbleiterlegierungen und anderen Materialien erzeugt werden. Bei der Sandwichmethode, die die Wissenschaftler im Rahmen der Jülich Aachen Research Alliance, Sektion „Future Information Technology“, gemeinsam entwickelt haben, ist dieser technische Aufwand unnötig und das Trägermaterial Silizium vereinfacht eine spätere Integration in Anwendungen.

Im vom Jülicher Peter Grünberg Institut koordinierten Virtuellen Institut für topologische Isolatoren (VITI) erforschen Wissenschaftler darüber hinaus weitere Nutzungsmöglichkeiten des neuen Materials in der Grundlagenforschung. So könnte es zum Beispiel den Nachweis neuer bisher nur theoretisch vorhergesagter Quantenphänomene ermöglichen, etwa von Quasipartikeln aus Elektronen und Leitungslöchern, die ein so genanntes topologisches Exziton-Kondensat bilden.

Originalveröffentlichung:
Realization of a vertical topological p-n junction in epitaxial Sb2Te3/Bi2Te3 heterostructures;
Markus Eschbach, Ewa Mlynczak, Jens Kellner, Jörn Kampmeier, Martin Lanius, Elmar Neumann, Christian Weyrich, Mathias Gehlmann, Pika Gospodaric, Sven Döring, Gregor Mussler, Nataliya Demarina, Martina Luysberg, Gustav Bihlmayer, Thomas Schäpers, Lukasz Plucinski, Stefan Blügel, Markus Morgenstern, Claus M. Schneider, Detlev Grützmacher;
Nature Communications (2015), DOI: 10.1038/ncomms9816

Weitere Informationen:
Forschungszentrum Jülich: www.fz-juelich.de
Pressemitteilung vom 29.2.2012 „Schienen für elektrischen Strom“: www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2012/12-06-29Virtuelles_Institut.html?nn=570024
Pressemitteilung vom 18.8.2011 „Blick in bisher ungeahnte Tiefen“: www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2011/11-08-18photoemissionsspektroskopie.html
Pressemitteilung vom 12.2.2009: „“Science": Neuartiger Quanteneffekt direkt beobachtet und erklärt“: www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2009/index1d0f_htm.html?nn=719084
Peter Grünberg Institut – Quanten-Theorie der Materialien (PGI-1): www.fz-juelich.de/pgi/pgi-1/DE/Home/home_node.html
Peter Grünberg Institut – Theoretische Nanoelektronik (PGI-2): www.fz-juelich.de/pgi/pgi-2/DE/Home/home_node.html
Peter Grünberg Institut – Mikrostrukturforschung (PGI-5): www.fz-juelich.de/pgi/pgi-5/DE/Home/home_node.html
Peter Grünberg Institut – Elektronische Eigenschaften (PGI-6): www.fz-juelich.de/pgi/pgi-6/
Peter Grünberg Institut – Halbleiter-Nanoelektronik (PGI-9): www.fz-juelich.de/pgi/pgi-9/DE/Home/home_node.html
Arbeitsgruppe Prof. Markus Morgenstern an der RWTH Aachen, II. Physikalisches Institut B: www.institut2b.physik.rwth-aachen.de/
Jülich Aachen Research Alliance, Sektion FIT (Fundamentals of Future Information Technology): www.jara.org/de/research/jara-fit/

Ansprechpartner:
Dr. Lukasz Plucinski, Forschungszentrum Jülich, Elektronische Eigenschaften (PGI-6), Tel. 02461 61-6684, E-Mail: l.plucinski@fz-juelich.de

Prof. Dr. Detlev Grützmacher, Forschungszentrum Jülich, Halbleiter-Nanoelektronik (PGI-9), Tel. 02461 61-2340, E-Mail: d.gruetzmacher@fz-juelich.de
Dr. Gustav Bihlmayer, Forschungszentrum Jülich, Quanten-Theorie der Materialien (PGI-1), Tel. 02461 61-4677, E-Mail: g.bihlmayer@fz-juelich.de
Prof. Dr. Markus Morgenstern, RWTH Aachen, II. Physikalisches Institut B, Tel. 0241 80-27076, E-Mail: mmorgens@physik.rwth-aachen.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-11-17schich...

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher der TU Dresden entwickeln intelligente Therapie-Geräte für Skoliosebehandlung
14.06.2019 | Technische Universität Dresden

nachricht CO2-neutraler Treibstoff aus Luft und Sonnenlicht
13.06.2019 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Universität Jena mit innovativer Lasertechnik auf Photonik-Messe in München vertreten

19.06.2019 | Messenachrichten

Meilenstein für starke Zusammenarbeit: Neuer Standort für Rittal und Eplan in Italien

19.06.2019 | Unternehmensmeldung

Katalyse: Hohe Reaktionsraten auch ohne Edelmetalle

19.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics