Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radar verschafft Durchblick in der Robotik

20.06.2018

Mit seiner Radar-on-Chip-Technologie hat das Fraunhofer FHR die Vorteile von Radar nun auch für die Robotik nutzbar gemacht und das im EU-Projekt Smokebot bewiesen. In dem Projekt haben internationale Partner aus Forschung, Industrie und künftigen Anwendern einen fahrbaren Roboter entwickelt, der Einsatzkräfte ferngesteuert oder sogar teilautonom mit wertvollen Informationen versorgen soll. Die kleinen, in Energieverbrauch und Datenmenge sehr effizienten Radarmodule des Fraunhofer FHR sorgen dabei auch bei schlechter Sicht für eine hoch aufgelöste 3D-Hinderniserkennung. Ende Juni 2018 wird der Smokebot-Prototyp unter realen Einsatzbedingungen im Brandhaus der Feuerwehr Dortmund getestet.

Ein mobiler Roboter soll Einsatzkräfte wie Polizei und Feuerwehr z. B. bei Großbränden künftig so unterstützen, dass sie sich zur Erkundung der Lage nicht selbst in Gefahr begeben müssen. Das war Ziel des im Programm „Horizon 2020“ der Europäischen Union geförderten Forschungsprojekts Smokebot.


Beim Smokebot-Roboter liefern unterschiedlichste Sensoren wie Radar, Kameras und Laser gemeinsam ein umfassendes Lagebild für Einsatzkräfte.

Fraunhofer FHR


Das kompakte hochauflösende 24x24 MIMO-Radarmodul sorgt auch bei schlechter Sicht für eine zuverlässige 3D-Hinderniserkennung mobiler Roboter.

Fraunhofer FHR

Der Roboter soll auch in unübersichtlichen Umgebungen und unter rauen Bedingungen alle für die Einsatzleitung nötigen Informationen zur Einschätzung und Bewältigung der Lage liefern. Dafür haben ihn die Projektpartner mit einer bisher einzigartigen Kombination aus Sensoren wie Radar, Kameras, Laserscannern und Gasdetektoren ausgestattet und diese zu einem mobilen Gesamtsystem integriert.

Die fusionierten Daten aller Sensoren können zusätzlich mit Notfallplänen oder Karten abgeglichen werden und versorgen die Einsatzkräfte in sicherer Entfernung mit einem detaillierten Lagebild.

Wo optische Systeme an ihre Grenzen geraten, erfasst Radar auch bei Rauch, Nebel, Staub oder Regen und harschen Umweltbedingungen zuverlässig Objekte oder Personen in seiner Umgebung und ist daher für diesen Einsatzzweck prädestiniert. Für die Nutzung in der Robotik haben die Ingenieure des Fraunhofer FHR ein nur 25 cm großes und wenige 100g schweres MIMO-Radarmodul zur 3D-Hinderniserkennung entwickelt.

Hochintegrierte Chiptechnologie auf Silizium-Germanium-Basis sorgt auch bei diesen kompakten Maßen für ein sehr hohes Auflösungsvermögen bei einer Arbeitsfrequenz von 120 GHz. Dafür haben die Wissenschaftler den Integrationsprozess für den Radar-Chip nochmal deutlich verbessert. So ist es gelungen, sowohl Signalerzeugung als auch Datenerfassung in nur einem Modul unterzubringen, das ohne weitere Kabel oder externe Module die gesamten Messdaten über eine Standard-Ethernet-Schnittstelle übertragen kann.

Die nachgeschaltete Prozessierung ermöglicht eine Rekonstruktion der aufgenommenen Bildinformation in 3D, so dass der der mobile Roboter Hindernisse in dem vor ihnen befindlichen Bereich dreidimensional lokalisiert.

Der entstandene Smokebot-Demonstrator wird zum Projektabschluss am 29. Juni von den Projektpartnern, zu denen neben dem Fraunhofer FHR die Feuerwehr Dortmund, die Leibniz-Universität Hannover und weiteren Universitäten und Industriepartner aus Deutschland, Österreich, Schweden und Großbritannien gehören, in einem Brandhaus auf dem Übungsgelände der Feuerwehr Dortmund unter realen Einsatzbedingungen getestet. Geleitet wird die gemeinsame Forschungsarbeit von Prof. Dr. Achim Lilienthal von der Universität Örebru, Schweden.

Die sehr kompakten Radarmodule des Fraunhofer FHR benötigen nur wenig Strom und können deshalb neben dem Smokebot auch auf anderen kleinen Trägern oder gar Drohnen angebracht werden und so beispielsweise Erkundungsaufgaben erfüllen. Gerade für Sicherheitsaufgaben ist die dreidimensionale Erfassung und Verfolgung von Objekten oder Personen mit Radar sehr gut geeignet, beispielsweise als intelligente Alarmanlage, zur Maschinenabsicherung oder für das autonome Fahren.

Das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR betreibt als eines der führenden europäischen Institute umfassende Forschung im Bereich Hochfrequenzphysik und Radartechnik. Kernthema der Forschungsarbeiten sind Sensoren für präziseste Abstands- oder Positionsbestimmung sowie bildgebende Systeme. Das Anwendungsspektrum dieser Geräte reicht von Systemen für Aufklärung, Überwachung und Schutz bis hin zu echtzeitfähigen Sensoren für Verkehr und Navigation sowie Qualitätssicherung und zerstörungsfreies Prüfen.

Weitere Informationen:

http://www.fhr.fraunhofer.de/de/presse-medien/pressemitteilungen/smokebot_abschl... Presseinformation und druckfähige Bilder
http://www.smokebot.eu Projektwebseite

Christiane Weber | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht »KaSiLi«: Bessere Batterien für Elektroautos »Made in Germany«
12.11.2019 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Effizienz-Weltrekord für organische Solarmodule aufgestellt
11.11.2019 | Bayerisches Zentrum für Angewandte Energieforschung e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Im Focus: Göttinger Chemiker weisen kleinstmögliche Eiskristalle nach

Temperaturabhängig gefriert Wasser zu Eis und umgekehrt. Dieser Vorgang, in der Wissenschaft als Phasenübergang bezeichnet, ist im Alltag gut bekannt. Um aber ein stabiles Gitter für Eiskristalle zu erreichen, ist eine Mindestanzahl an Molekülen nötig, ansonsten ist das Konstrukt instabil. Bisher konnte dieser Wert nur grob geschätzt werden. Einem deutsch-amerikanischen Forschungsteam unter Leitung des Chemikers Prof. Dr. Thomas Zeuch vom Institut für Physikalische Chemie der Universität Göttingen ist es nun gelungen, die Größe kleinstmöglicher Eiskristalle genau zu bestimmen. Die Forschungsergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Science erschienen.

Knapp 100 Wassermoleküle sind nötig, um einen Eiskristall in seiner kleinstmöglichen Ausprägung zu formen. Nachweisen konnten die Wissenschaftler zudem, dass...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Selbstorganisation weicher Materie im Detail verstehen

12.11.2019 | Physik Astronomie

Magnetisches Tuning auf der Nanoskala

12.11.2019 | Physik Astronomie

»KaSiLi«: Bessere Batterien für Elektroautos »Made in Germany«

12.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics