Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Qualitätskontrolle in der Photovoltaik-Industrie: Neue Potenziale durch Raman-Spektroskopie

15.08.2016

Bei der Massenfertigung von Solarzellen spielt die Reinheit des eingesetzten Materials eine entscheidende Rolle für den elektrischen Wirkungsgrad des Endproduktes. Das erfordert geeignete Maßnahmen zur zuverlässigen Prozesskontrolle. In einem gemeinsamen Projekt setzen das Fraunhofer-Center für Silizium-Photovoltaik CSP, die Fachhochschule Südwestfalen, die Geb. Schmid GmbH und die Spectroscopy & Imaging GmbH dabei auf einen neuen Ansatz: Raman-Spektroskopie soll es ermöglichen, Verunreinigungen auf dem oder im Material zerstörungs- und kontaktfrei zu analysieren. So könnten die Herstellungskosten gesenkt werden, bei gleichzeitigen Vorteilen für die Qualitätskontrolle.

Mehr als 95 Prozent der weltweit hergestellten Solarzellen bestehen aus Siliziumwafern. Das sind dünne Scheiben, die im Herstellungsprozess zunächst aus großen Silizium-Blöcken herausgeschnitten werden. Beispielsweise durch den Sägevorgang können sie dabei beschädigt und zudem mit organischen Resten aus dem Sägemittel verschmutzt werden.


Solarzelle unter einem µ-Raman-Spektrometer.

© FH Südwestfalen/Bernd Ahrens

Solche Kontaminationen treten zwar nur sehr selten auf, durch die hohen Stückzahlen in der Photovoltaik-Industrie können sie aber dennoch erheblichen Einfluss auf die Gesamtkosten haben. Deshalb sind aufwendige Prozesse nötig, um die Wafer chemisch zu reinigen oder fehlerhafte Wafer auszusortieren, bevor sie weiterverarbeitet werden.

»Es gibt bisher kein inline-fähiges Verfahren, das solche organischen Rückstände auf Wafer-Oberflächen analysieren kann. Wir wollen dafür die Raman-Spektroskopie nutzbar machen, die zugleich auch die Oberflächenbeschaffenheit direkt im Anschluss an den Sägevorgang überprüfen kann«, sagt Prof. Dr. Stefan Schweizer, der das Projekt an der Fachhochschule Südwestfalen leitet.

»Wenn uns das gelingt, haben wir ein leistungsstarkes Instrument zur lückenlosen und durchgehenden Kontrolle der Herstellungsqualität in der Fertigung von Siliziumwafern. Mögliche Verunreinigungen könnten frühzeitig erkannt und unnötige Reinigungsschritte eingespart werden. Das steigert die Materialeffizienz, senkt die Produktionskosten und schont die Umwelt«, umschreibt er die Ziele.

Die Raman-Spektroskopie wird bisher vor allem bei der Analyse von pharmazeutischen Produkten und in der wissenschaftlichen Forschung genutzt. Das zu untersuchende Material wird dabei mittels eines Lasers bestrahlt. Trifft das Licht aus der Laserquelle auf die Oberfläche der Probe, wird es gestreut. Aus der Verteilung der Frequenzen im entstehenden Spektrum lassen sich Aussagen über die untersuchte Substanz und die Materialeigenschaften ableiten.

Die Vorteile der Raman-Spektroskopie gegenüber anderen Methoden: Das Material muss nicht eigens vorbereitet werden, die Überprüfung ist also an jedem Schritt der Prozesskette ohne vorherige Probenpräparation möglich. Die Überprüfung erfolgt zerstörungs- und kontaktfrei. Bei einer Kontamination können nicht nur Aussagen darüber erfolgen, ob ein Siliziumwafer verunreinigt ist, sondern auch wie stark und mit welchen Substanzen. Denn verschiedene Verunreinigungen sorgen im zurückgestreuten Licht für charakteristische Frequenzen, sie sind somit wie an einem Fingerabdruck zu identifizieren.

»Wir wollen zunächst Detektionsgrenzen ermitteln, um zu zeigen, dass die Methode die nötige hohe Nachweisempfindlichkeit hat. Gleichzeitig werden wir in Zusammenarbeit mit den beteiligten Industriepartnern mit der Entwicklung eines Messkopfes beginnen, der in industriellen Anlagen eingesetzt werden kann«, umschreibt Dr. Hartmut Schwabe vom Fraunhofer CSP in Halle den Ablauf des bis Ende Juni 2019 laufenden Projekts.

Das Fraunhofer CSP bringt seine eigene Siliziumwafer-Produktionslinie und einen großen Pool an materialanalytischen Messverfahren in das Projekt ein, in dem zudem das wissenschaftliche Know-how der Fachhochschule Südwestfalen, die Expertise der Spectroscopy & Imaging GmbH als Hersteller von Raman-Spektrometern und die Erfahrung der Geb. Schmid GmbH im Bereich der Systemintegration im Rahmen von Inline-Messverfahren und -Geräten gebündelt werden. Durch ein Demonstrator-System soll zum Projektabschluss die Funktionalität im Einsatz unter realen Bedingungen gezeigt werden.

Über das Fraunhofer-Center für Siliziumphotovoltaik CSP

Das Fraunhofer CSP betreibt angewandte Forschung in den Themengebieten der Siliziumkristallisation, der Solarmodultechnologie und Solarwaferfertigung. Mit höchster Kompetenz entwickelt es neue Technologien von der Ingotherstellung bis zur Modulfertigung und beschäftigt sich mit der Entwicklung neuer Materialien entlang der Wertschöpfungskette.

Ein weiterer Schwerpunkt ist die Bewertung von Solarzellen und Modulen sowie die elektrische, optische und mikrostrukturelle Material- und Bauteilcharakterisierung. Hierfür stehen hochmoderne Forschungs- und Analysegeräte zur Verfügung. Das Fraunhofer CSP ist eine gemeinsame Einrichtung des Fraunhofer-Instituts für Mikrostruktur von Werkstoffen und Systemen IMWS und des Fraunhofer-Instituts für Solare Energiesysteme ISE.

Clemens Homann | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS
Weitere Informationen:
http://www.imws.fraunhofer.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics