Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Qualitätskontrolle in der Photovoltaik-Industrie: Neue Potenziale durch Raman-Spektroskopie

15.08.2016

Bei der Massenfertigung von Solarzellen spielt die Reinheit des eingesetzten Materials eine entscheidende Rolle für den elektrischen Wirkungsgrad des Endproduktes. Das erfordert geeignete Maßnahmen zur zuverlässigen Prozesskontrolle. In einem gemeinsamen Projekt setzen das Fraunhofer-Center für Silizium-Photovoltaik CSP, die Fachhochschule Südwestfalen, die Geb. Schmid GmbH und die Spectroscopy & Imaging GmbH dabei auf einen neuen Ansatz: Raman-Spektroskopie soll es ermöglichen, Verunreinigungen auf dem oder im Material zerstörungs- und kontaktfrei zu analysieren. So könnten die Herstellungskosten gesenkt werden, bei gleichzeitigen Vorteilen für die Qualitätskontrolle.

Mehr als 95 Prozent der weltweit hergestellten Solarzellen bestehen aus Siliziumwafern. Das sind dünne Scheiben, die im Herstellungsprozess zunächst aus großen Silizium-Blöcken herausgeschnitten werden. Beispielsweise durch den Sägevorgang können sie dabei beschädigt und zudem mit organischen Resten aus dem Sägemittel verschmutzt werden.


Solarzelle unter einem µ-Raman-Spektrometer.

© FH Südwestfalen/Bernd Ahrens

Solche Kontaminationen treten zwar nur sehr selten auf, durch die hohen Stückzahlen in der Photovoltaik-Industrie können sie aber dennoch erheblichen Einfluss auf die Gesamtkosten haben. Deshalb sind aufwendige Prozesse nötig, um die Wafer chemisch zu reinigen oder fehlerhafte Wafer auszusortieren, bevor sie weiterverarbeitet werden.

»Es gibt bisher kein inline-fähiges Verfahren, das solche organischen Rückstände auf Wafer-Oberflächen analysieren kann. Wir wollen dafür die Raman-Spektroskopie nutzbar machen, die zugleich auch die Oberflächenbeschaffenheit direkt im Anschluss an den Sägevorgang überprüfen kann«, sagt Prof. Dr. Stefan Schweizer, der das Projekt an der Fachhochschule Südwestfalen leitet.

»Wenn uns das gelingt, haben wir ein leistungsstarkes Instrument zur lückenlosen und durchgehenden Kontrolle der Herstellungsqualität in der Fertigung von Siliziumwafern. Mögliche Verunreinigungen könnten frühzeitig erkannt und unnötige Reinigungsschritte eingespart werden. Das steigert die Materialeffizienz, senkt die Produktionskosten und schont die Umwelt«, umschreibt er die Ziele.

Die Raman-Spektroskopie wird bisher vor allem bei der Analyse von pharmazeutischen Produkten und in der wissenschaftlichen Forschung genutzt. Das zu untersuchende Material wird dabei mittels eines Lasers bestrahlt. Trifft das Licht aus der Laserquelle auf die Oberfläche der Probe, wird es gestreut. Aus der Verteilung der Frequenzen im entstehenden Spektrum lassen sich Aussagen über die untersuchte Substanz und die Materialeigenschaften ableiten.

Die Vorteile der Raman-Spektroskopie gegenüber anderen Methoden: Das Material muss nicht eigens vorbereitet werden, die Überprüfung ist also an jedem Schritt der Prozesskette ohne vorherige Probenpräparation möglich. Die Überprüfung erfolgt zerstörungs- und kontaktfrei. Bei einer Kontamination können nicht nur Aussagen darüber erfolgen, ob ein Siliziumwafer verunreinigt ist, sondern auch wie stark und mit welchen Substanzen. Denn verschiedene Verunreinigungen sorgen im zurückgestreuten Licht für charakteristische Frequenzen, sie sind somit wie an einem Fingerabdruck zu identifizieren.

»Wir wollen zunächst Detektionsgrenzen ermitteln, um zu zeigen, dass die Methode die nötige hohe Nachweisempfindlichkeit hat. Gleichzeitig werden wir in Zusammenarbeit mit den beteiligten Industriepartnern mit der Entwicklung eines Messkopfes beginnen, der in industriellen Anlagen eingesetzt werden kann«, umschreibt Dr. Hartmut Schwabe vom Fraunhofer CSP in Halle den Ablauf des bis Ende Juni 2019 laufenden Projekts.

Das Fraunhofer CSP bringt seine eigene Siliziumwafer-Produktionslinie und einen großen Pool an materialanalytischen Messverfahren in das Projekt ein, in dem zudem das wissenschaftliche Know-how der Fachhochschule Südwestfalen, die Expertise der Spectroscopy & Imaging GmbH als Hersteller von Raman-Spektrometern und die Erfahrung der Geb. Schmid GmbH im Bereich der Systemintegration im Rahmen von Inline-Messverfahren und -Geräten gebündelt werden. Durch ein Demonstrator-System soll zum Projektabschluss die Funktionalität im Einsatz unter realen Bedingungen gezeigt werden.

Über das Fraunhofer-Center für Siliziumphotovoltaik CSP

Das Fraunhofer CSP betreibt angewandte Forschung in den Themengebieten der Siliziumkristallisation, der Solarmodultechnologie und Solarwaferfertigung. Mit höchster Kompetenz entwickelt es neue Technologien von der Ingotherstellung bis zur Modulfertigung und beschäftigt sich mit der Entwicklung neuer Materialien entlang der Wertschöpfungskette.

Ein weiterer Schwerpunkt ist die Bewertung von Solarzellen und Modulen sowie die elektrische, optische und mikrostrukturelle Material- und Bauteilcharakterisierung. Hierfür stehen hochmoderne Forschungs- und Analysegeräte zur Verfügung. Das Fraunhofer CSP ist eine gemeinsame Einrichtung des Fraunhofer-Instituts für Mikrostruktur von Werkstoffen und Systemen IMWS und des Fraunhofer-Instituts für Solare Energiesysteme ISE.

Clemens Homann | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS
Weitere Informationen:
http://www.imws.fraunhofer.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht EU-Projekt SONAR: Bessere Batterien für Strom aus erneuerbaren Energiequellen
16.01.2020 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

nachricht Von der Fledermausblume zur Sonarnavigation
15.01.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik

Um den Transfer von Forschungsentwicklungen aus dem Bereich der Quantensensorik in industrielle Anwendungen voranzubringen, entsteht am Fraunhofer IAF ein Applikationslabor. Damit sollen interessierte Unternehmen und insbesondere regionale KMU sowie Start-ups die Möglichkeit erhalten, das Innovationspotenzial von Quantensensoren für ihre spezifischen Anforderungen zu evaluieren. Sowohl das Land Baden-Württemberg als auch die Fraunhofer-Gesellschaft fördern das auf vier Jahre angelegte Vorhaben mit jeweils einer Million Euro.

Das Applikationslabor wird im Rahmen des Fraunhofer-Leitprojekts »QMag«, kurz für Quantenmagnetometrie, errichtet. In dem Projekt entwickeln Forschende von...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: Wie Zellen ihr Skelett bilden

Wissenschaftler erforschen die Entstehung sogenannter Mikrotubuli

Zellen benötigen für viele wichtige Prozesse wie Zellteilung und zelluläre Transportvorgänge strukturgebende Filamente, sogenannte Mikrotubuli.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2020

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker lassen Bor-Atome wandern

17.01.2020 | Biowissenschaften Chemie

Infektiöse Proteine bei Alzheimer

17.01.2020 | Biowissenschaften Chemie

Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

17.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics