Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Power-to-Gas mit hohem Wirkungsgrad

05.02.2018

Das Erdgasnetz kann als Puffer für den wetterabhängigen Strom aus Wind und Sonne dienen. Notwendig dazu sind wirtschaftliche Prozesse die Strom nutzen, um chemische Energieträger zu erzeugen. Einen wichtigen Schritt hat das vom KIT (Karlsruher Institut für Technologie) koordinierte EU-Projekt HELMETH nun gemacht. Es hat gezeigt, dass Hochtemperaturelektrolyse und Methanisierung als gemeinsamer Power-to-Gas-Prozess mit einem Wirkungsgrad von über 75 Prozent im Technikumsmaßstab möglich sind.

„Wir haben die Synergien zwischen Elektrolyse und Methanisierung erstmals konsequent ausgenutzt und so einen Wirkungsgrad erreicht, der rund 20 Prozentpunkte über dem der Standardtechnologien liegt“, erklärt Dimosthenis Trimis vom KIT, Koordinator des EU-Projektes HELMETH.


Die Demonstratoranlage des Projekts HELMETH verbindet Methanisierung (links) und Elektrolyse (rechts) mit einem Wirkungsgrad von 76 Prozent.

sunfire GmbH

„Dank der breiten disziplinären Basis unseres Forschungsverbundes konnten wir zur gesellschaftlichen Herausforderung Energiewende einen markanten Mosaikstein beitragen.“

Eine konventionelle Power-to-Gas Industrieanlage setzt rund 54 Prozent der elektrischen Energie erneuerbaren Stroms in chemische Energie des Brennstoffes Methan um. Der Prototyp des EU-Projektes HELMETH, der in etwa in zwei gängige Seefracht-Container von je rund sechs Metern Länge passt, erreichte bei den finalen Messungen einen Wirkungsgrad von 76 Prozent, was auf einen Wirkungsgrad im Industriemaßstab von 80 Prozent hoffen lässt. Parallel wurden Studien zur Wirtschaftlichkeit und Klimabilanz der neuen Technologie erstellt.

„Mit so hohen Wirkungsgraden macht die Power-to-Gas-Technologie einen großen Schritt hin zur Wirtschaftlichkeit“, so Trimis. Sogar Wirkungsgrade von mehr als 80 Prozent scheinen möglich, wenn die in HELMETH identifizierten, limitierenden Prozesschritte durch künftige Forschung in Angriff genommen werden.

Ein großes Potenzial, das in HELMETH gehoben wurde, lag in der optimalen Nutzung der Prozesswärme aus der Methanisierung, um etwa den Wärmebedarf bei der verwendeten Elektrolysetechnologie zu decken. Insbesondere die Hochtemperaturelektrolyse bei rund 800 Grad Celsius und hohen Drücken hat thermodynamische Vorteile, die den Wirkungsgrad steigern. Bei der Elektrolyse wird der Strom zunächst genutzt, um Wasser in Sauerstoff und den Energieträger Wasserstoff zu zersetzen.

Danach reagiert der Wasserstoff gemeinsam mit Kohlendioxid oder Kohlenmonoxid unter Wärmeentwicklung zu Methan, dem Hauptbestandteil von Erdgas, weiter. Der Vorteil von Methan gegenüber Wasserstoff ist, dass es in der bestehenden Erdgasinfrastruktur ohne Begrenzungen oder weitere Aufbereitung eingespeist werden kann.

Die Einspeisung von reinem Wasserstoff bedarf möglicherweise bei Transport und Anwendungen größeren Anpassungen, da Energiedichte und chemische Eigenschaften stark unterschiedlich sind. Das im HELMETH-Projekt erzeugte Erdgassubstitut enthielt letztlich stets Wasserstoffkonzentrationen kleiner 2 Volumenprozent und wäre somit in das gesamte deutsche Erdgasnetz ohne Einschränkungen einspeisefähig.

Das Projekt HELMETH lief fast vier Jahre und mit einem Budget von rund 3,8 Millionen Euro. Das Projekt wurde mit 2,5 Millionen Euro aus dem European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative gefördert. HELMETH steht als Akronym für “Integrated High-Temperature ELectrolysis and METHanation for Effective Power to Gas Conversion“.

Projektpartner sind neben dem KIT die Universität Turin und TU Athen, die Firmen Sunfire GmbH und EthosEnergy Italia SPA sowie das European Research Institute of Catalysis ERIC und der DVGW –Deutscher Verein des Gas und Wasserfaches e.V.

Weiterer Pressekontakt:
Kosta Schinarakis, Themenscout, Tel.: +49 721 608 21165 , E-Mail: schinarakis@kit.edu

Details zum KIT-Zentrum Energie: http://www.energie.kit.edu

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 26 000 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php

Weitere Informationen:

http://schinarakis@kit.edu
http://www.energie.kit.edu
http://www.sek.kit.edu/presse.php

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics