Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Perowskit-Solarzellen: mesoporöse Zwischenschicht mildert Einfluss von Defekten

18.01.2018

Für die Stabilität des Wirkungsgrads von Perowskit-Solarzellen spielt ihre innere Architektur eine entscheidende Rolle. Dies zeigten nun zwei Forscherteams von Helmholtz-Zentrum Berlin und der TU München. Sie kombinierten dafür ihre Experimente mit numerischen Simulationen.

In nur wenigen Jahren hat sich der Wirkungsgrad von Perowskit-Solarzellen von knapp drei auf über 20 Prozent steigern lassen. Dazu kommt, dass dieses Material preisgünstig ist und einfach verarbeitet werden kann. Deshalb gelten Perowskit-Dünnschichten als vielversprechender Kandidat für den weiteren Ausbau der Photovoltaik.


Rasterelektronenmikroskopien der Perowskit-Solarzellen, links mit glatter (rote Linie), rechts mit mesoporöser Grenzschicht (rötliche Region) zwischen Perowskit (braun) und Metalloxid (türkis).

A. Gagliardi/TUM

Leider gibt es bislang noch einige Haken: So bleibt der Wirkungsgrad von Perowskit-Solarzellen unter UV-Strahlung im Freien oder elektrischen Feldern, die beim Betrieb auftreten, nicht lange stabil. Nun haben Dr. Antonio Abate, Leiter einer Helmholtz-Nachwuchsgruppe am HZB, und Prof. Alessio Gagliardi, TU München, gezeigt, welchen Einfluss der Aufbau von Perowskit-Zellen auf die Stabilität des Wirkungsgrads hat. Ihre Ergebnisse sind im Fachjournal ACS Energy Letters publiziert.

Die Wissenschaftler untersuchten zwei unterschiedliche Architekturen von Perowskit-Solarzellen, die ansonsten auf identische Weise präpariert wurden. In beiden grenzt die Perowskit-Dünnschicht an eine elektronenleitende Schicht aus einem Metalloxid wie Titandioxid oder Zinndioxid.

Während in der ersten Variante die beiden Schichten glatt aneinandergrenzen (planare Grenzschicht), bildet sich in der zweiten Variante eine mesoporöse Zwischenschicht aus Perowskit und Metalloxid aus, die eine komplexe, schwammartige Struktur mit vielen winzigen Poren besitzt. Überraschenderweise blieb der Wirkungsgrad von Zellen mit dieser mesoporösen Zwischenschicht weitaus länger stabil als in Zellen mit einer planaren Zwischenschicht.

Durch weitere Experimente und mit Hilfe numerischer Simulationen konnten die Forscher nun eine Begründung für diesen Effekt finden: „Die mesoporöse Zwischenschicht besitzt eine sehr große innere Oberfläche und das erweist sich als Vorteil“, erklärt Abate.

Denn dadurch verteilen sich etwaige Fehlstellen und Defekte, die den Wirkungsgrad mindern und sich während des Betriebs der Solarzelle anhäufen, sehr großflächig. Ihr Einfluss wird damit „verdünnt” und abgemildert, so dass der Wirkungsgrad stabil bleibt.

Die Wissenschaftler konnten sogar einen Schwellenwert für die Defektdichte bei den mesoporösen Perowskit-Zellen ermitteln. Oberhalb dieser Schwelle nimmt die Degradation der Zelle sehr rasch zu, ihre Stabilität sinkt rapide. Doch unterhalb der Schwelle bleibt der Wirkungsgrad der Zelle stabil. „Wir konnten zeigen, dass Perowskit-Zellen in einer mesoporösen Architektur weitaus besser gegen den Einfluss von Defekten geschützt sind”, sagt Abate.

Die Studie ist publiziert in ACS Energy Lett., (2018): Mesoporous Electron-Selective Contacts Enhance the Tolerance to Interfacial Ion Accumulation in Perovskite Solar Cells, A. Abate & A. Gagliardi

DOI: 10.1021/acsenergylett.7b01101

Dr. Antonia Rötger | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schlaflos wegen Handy? Neue Displays könnten Abhilfe schaffen
21.06.2018 | Universität Basel

nachricht Sensoren auf Gummibärchen: Team druckt Mikroelektroden-Arrays auf weiche Materialien
21.06.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics