Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„PerovsKET“ erforscht Schlüsseltechnologien für photonische Schaltungen

19.07.2019

Den Weg für eine technologische Revolution ebnen will ein Team des Lehrstuhls für Elektronische Bauelemente an der Bergischen Universität Wuppertal mit dem Projekt „PerovsKET – Verbesserung der Mikrostruktur von Perowskiten mittels thermischem Nanoimprint als Schlüsseltechnologie für großflächige Perowskit-Optoelektronik“. Kooperationspartner sind AMO GmbH und NB Technologies. Das Projekt zur Erforschung wichtiger Basistechnologien für die Informations- und Kommunikationstechnik der Zukunft wird aus dem Europäischen Fonds für regionale Entwicklung (EFRE) und vom Land NRW über eine Laufzeit von 3 Jahren mit insgesamt rund 1,5 Mio. Euro gefördert. 530.000 Euro gehen an die Bergische Uni.

Seit ihrer Geburtsstunde Anfang der 1970er Jahre prägt die Mikroelektronik den Alltag der modernen Informationsgesellschaft. Träger von Informationen sind dabei geladene Teilchen, so genannte Elektronen.


Lichtemittierender Perowskitkristall

Bild: Lehrstuhl für Elektronische Bauelemente

Durch Miniaturisierung wurde die Mikroelektronik über Jahre hinweg verbessert. Der Fortschritt stößt jedoch immer mehr an physikalische Grenzen. Eine Revolution könnte in Zukunft der Einsatz photonischer Schaltkreise auslösen. Träger der Information hierbei sind Lichtteilchen, so genannte Photonen.

Die Kombination elektronischer und photonischer Schaltungen auf einem Mikrochip – integrierte Optoelektronik – stellt hinsichtlich Übertragungsgeschwindigkeit und Effizienz Funktionalitäten in Aussicht, die bislang nicht erreicht wurden. Neben der Informations- und Kommunikationstechnik finden sich vielfältige Anwendungsmöglichkeiten im Bereich der Sensorik bis hin zu sogenannten „Labor-auf-dem-Chip“-Lösungen.

Der integrierten Optoelektronik fehlt allerdings die zentrale Komponente: eine geeignete (Laser-)Lichtquelle, die sich in Siliziumchips integrieren lässt. Hier kommen neue Halbleiter aus einer Materialklasse, die man als Mineralien kennt, ins Spiel – die Perowskite. Sie weisen großes Potenzial für die Integration in die Silizium-Elektronik auf.

Als wichtige Vorarbeit wurde in Zusammenarbeit des Lehrstuhls für Elektronische Bauelemente unter Leitung von Prof. Dr. Thomas Riedl und der Arbeitsgruppe Mikrostrukturtechnik unter Leitung von Prof. Dr. Hella-Christin Scheer ein neuartiger Herstellungsprozess für besonders defektarme Perowskit-Schichten entwickelt.

Dabei werden die aus einer Lösung aufgebrachten Schichten mittels eines thermischen Imprintverfahrens rekristallisiert. „Sehr vereinfacht gesprochen, werden die anfangs sehr rauen und defektreichen Perowskit-Schichten mit einem sehr präzisen Bügeleisen glattgebügelt. Dadurch werden nicht nur optische Verluste durch Lichtstreuung reduziert, sondern es werden auch Strukturdefekte im Perowskit-Halbleiter beseitigt, die Lasertätigkeit erschweren oder unmöglich machen. Auch eine Strukturierung der Perowskit-Schichten mit photonischen Resonatorstrukturen, die für einen Laser benötigt werden, wird dadurch möglich“, erklärt Prof. Riedl. Das Verfahren sei für etablierte Halbleiter aussichtslos. „Erst die spezifischen Kristalleigenschaften der Perowskite ermöglichen dieses Vorgehen“, ergänzt der Wissenschaftler.

Ziel des Projekts PerovsKET ist es, die entwickelte Prozesstechnik besser zu verstehen und das bisher noch in den Perowskiten enthaltene Blei durch andere Metalle zu ersetzen. Der Projektpartner NB Technologies aus Bonn bringt ein patentiertes Nanoimprint-Verfahren mit innovativen Stempeln in das Projekt ein. Die Aachener AMO GmbH wendet innovative Strukturierungsverfahren an, um die verbesserten Perowskit-Materialien in siliziumbasierte Chipsysteme zu integrieren.

Die nano-photonischen Bauelemente sollen eine wesentlich verbesserte Leistungsfähigkeit demonstrieren und Rekordwerte auch auf größeren aktiven Flächen als bisher erreichen. „Idealerweise leisten unsere Arbeiten auch einen wesentlichen Beitrag im globalen Rennen um die erste Perowskit-Laserdiode. Das übergeordnete Ziel bleibt aber die integrierte Optoelektronik, um das Beste aus der Welt der Elektronik und der Photonik zu vereinen“, erläutert Prof. Riedl.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Thomas Riedl
Fakultät für Elektrotechnik, Informationstechnik und Medientechnik
Lehrstuhl für Elektronische Bauelemente
E-Mail t.riedl@uni-wuppertal.de

Marylen Reschop | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-wuppertal.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ferroelektrizität verbessert Perowskit-Solarzellen
20.09.2019 | Karlsruher Institut für Technologie

nachricht Flüssigkristalline „Stromkabel“
19.09.2019 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics