Neues Testfeld: TU untersucht gasisolierte Gleichstrom-Erdleitungen unter Realbedingungen

Ein Loop aus zwei Mal 50 Meter Gleichstrom-Leitung in Freilufttechnik. Hier wird das thermo-elektrische Verhalten unter hoher Gleichspannungsbelastung untersucht. Gregor Rynkowski / TU Darmstadt

Das Gelingen der Energiewende steht in direktem Zusammenhang mit dem elektrischen Netzausbau in Deutschland, denn der Strom, der aus Windenergie im Norden gewonnen wird, muss in den Süden des Landes transportiert werden. Doch hier ergeben sich technische und gesellschaftliche Probleme:

Der Bau von Hochspannungsfreileitungen erzeugt Widerstand bei Anwohnerinnen und Anwohnern. Und mit herkömmlichen Wechselstrom-Erdkabeln lässt sich Energie nicht über mehrere hundert Kilometer wirtschaftlich transportieren.

Einen Ausweg stellen Gleichstromkabel dar, die aber technisches Neuland sind und sich für die geplante Übertragungsspannung von bis zu ± 550.000 Volt zum Teil noch in der Qualifizierungsphase befinden.

Eine sinnvolle Ergänzung zu den genannten Übertragungstechniken mit weniger Platzbedarf stellen neuartige, gasisolierte Gleichstrom-Übertragungsleitungen dar (DC GIL, Direct Current Gas-insulated Transmission Lines).

Dabei verläuft ein metallischer Innenleiter, gestützt auf Isolatoren, innerhalb eines metallischen Außenrohrs. Durch den auf Hochspannung liegenden Leiter fließt Gleichstrom von bis zu 5.000 Ampere. Zwischen dem Innenleiter und dem Außenrohr befindet sich ein Isoliergas, das die hohe Gleichspannung elektrisch isoliert.

Dank der kompakten Bauweise dieser Leitungen lassen sich fünf Gigawatt Leistung – das ist die Leistung von vier bis fünf großen Kraftwerksblöcken – auf einer Trassenbreite von nur sechs Metern übertragen. Zum Vergleich: Freileitungen benötigen für weitaus geringere Leistungen etwa 60 Meter breite Trassen.

Erstmals wird nun diese bislang wenig erforschte, aber potenziell zukunftsträchtige Technologie an der TU Darmstadt einem mindestens einjährigen Langzeitversuch unter realistischen Betriebsbedingungen unterzogen.

Die Wissenschaftlerinnen und Wissenschaftler des Fachgebiets Hochspannungstechnik am Fachbereich Elektrotechnik und Informationstechnik der TU wollen in Zusammenarbeit mit anderen Hochschulen und Industriepartnern herausfinden, ob die unterirdischen gasisolierten Gleichstromleitungen die in sie gesetzten Hoffnungen erfüllen können: höhere Übertragungsleistung, geringerer Landschaftsverbrauch, geringere elektrische Verluste, hohe Zuverlässigkeit sowie nicht zuletzt auch eine höhere Wirtschaftlichkeit.

Die TU Darmstadt und die Firma Siemens koordinieren gemeinsam das gesamte Projekt. Die TU Darmstadt ist insbesondere für die Umsetzung und Erprobung neuester international anerkannter wie auch im Rahmen des Projekts neu entwickelter Prüfmethoden zuständig.

An der Versuchstrasse werden außerdem thermische und mechanische Messungen durch die Ostbayerische Technische Hochschule Regensburg durchgeführt, um die Bodenmechanik und die thermischen Grenzwerte der Leitung zu studieren.

Die Erforschung der elektrischen Zustandserfassung der Hochspannungsleitung – auch das ist technisches Neuland – erfolgt gemeinsam mit der Firma PowerDiagnostix sowie der TU Berlin. Für die Entwicklung und den Bau der neuartigen gasisolierten Leitung ist insbesondere der Kooperationspartner Siemens verantwortlich.

Für die Untersuchung der Leitungen unter realen Bedingungen sind Spannungen im Bereich von ± 550.000 Volt und Ströme im Bereich von 5.000 Ampere notwendig. Das entspricht rechnerisch etwa der Leistung von vier bis fünf Kraftwerksblöcken, die sich nicht einfach dem Stromnetz entnehmen lässt.

Das Fachgebiet Hochspannungstechnik hat daher eine neuartige synthetische Prüfmethode entwickelt, um den Leistungsbedarf für den Langzeitversuch auf die Leistung eines 200-PS-Motors zu reduzieren.

Das Testfeld liegt in Griesheim neben dem August-Euler-Flugplatz, direkt am Stadtrand von Darmstadt. Für das Projekt errichtete die TU eine 670 Quadratmeter große Versuchshalle, die die Technik zur Spannungs- und Stromerzeugung beherbergt. Hallenkonstruktion und Fundamente sind eigens für die Arbeit mit hohen Spannungen ausgelegt. Von hier aus ziehen sich insgesamt 250 Meter gasisolierte Leitungen durch das ein Hektar große Versuchsfeld, die wegen der leichteren Zugänglichkeit teilweise oberirdisch, teilweise aber auch in etwa zwei Metern Tiefe unter der Erdoberfläche verlegt wurden.

Das Projekt mit einem finanziellen Gesamtumfang von etwa 3,2 Millionen Euro wird zur Hälfte vom Hessischen Wirtschaftsministerium durch Mittel des Europäischen Fonds für regionale Entwicklung (EFRE) gefördert.

Das Testfeld gehört zum interdisziplinär angelegten Profilbereich „Energiesysteme der Zukunft“ der TU Darmstadt und ist ein wichtiger Teil der Forschungsrichtung „Stromtrassen optimieren“.

Hinweis an die Redaktionen:
Pressefotos des Versuchsfeldes können Sie im Internet unter https://bit.ly/33vJNrv herunterladen.

Weitere Informationen

Über den Profilbereich Energiesysteme der Zukunft
Der Profilbereich Energiesysteme der Zukunft bündelt die Energieforschung der TU Darmstadt. Er ist eine Plattform für den interdisziplinären Austausch von Forscherinnen und Forschern aus den Naturwissenschaften, den Ingenieur- und den Sozialwissenschaften. Diese breite Interdisziplinarität und enge Zusammenarbeit ist eine besondere Stärke von Darmstadt, sichtbar in vielen erfolgreichen gemeinsamen Forschungsaktivitäten. Darmstädter Wissenschaftlerinnen und Wissenschaftler wurden schon vielfach für ihre Arbeit in der Energieforschung ausgezeichnet. Schaufenster sind die Themenfelder „Stromtrassen optimieren“, „Energiesysteme flexibel und resilient planen und betreiben“ und „Regenerative Brennstoffe erzeugen und nutzen“. Darüber hinaus fördert der Profilbereich die interdisziplinäre Ausbildung durch einen Energie-Studiengang und eine Graduiertenschule, sowie den Transfer wissenschaftlicher Erkenntnisse in Wirtschaft und Gesellschaft.

Über die TU Darmstadt
Die TU Darmstadt zählt zu den führenden Technischen Universitäten in Deutschland. Sie verbindet vielfältige Wissenschaftskulturen zu einem charakteristischen Profil. Ingenieur- und Naturwissenschaften bilden den Schwerpunkt und kooperieren eng mit prägnanten Geistes- und Sozialwissenschaften. Weltweit stehen wir für herausragende Forschung in unseren hoch relevanten und fokussierten Profilbereichen: Cybersecurity, Internet und Digitalisierung, Kernphysik, Energiesysteme, Strömungsdynamik und Wärme- und Stofftransport, Neue Materialien für Produktinnovationen. Wir entwickeln unser Portfolio in Forschung und Lehre, Innovation und Transfer dynamisch, um der Gesellschaft kontinuierlich wichtige Zukunftschancen zu eröffnen. Daran arbeiten unsere 312 Professorinnen und Professoren, 4.450 wissenschaftlichen und administrativ-technischen Mitarbeiterinnen und Mitarbeiter sowie knapp 26.000 Studierenden. Mit der Goethe-Universität Frankfurt und der Johannes Gutenberg-Universität Mainz bildet die TU Darmstadt die strategische Allianz der Rhein-Main-Universitäten.

www.tu-darmstadt.de 

MI-Nr. 71/2019, sip

Media Contact

Mareike Hochschild idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer