Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Material soll Grenzen der Silicium-Elektronik überwinden

21.01.2019

Der Elektronikmarkt wächst signifikant und fordert immer kompaktere und effizientere leistungselektronische Systeme. Die bislang dominierende Elektronik auf Basis von Silicium wird den steigenden industriellen Ansprüchen in absehbarer Zeit nicht mehr gerecht werden. Nun haben sich Wissenschaftlerinnen und Wissenschaftler aus Universität, Fraunhofer-Gesellschaft und Leistungszentren zusammengeschlossen, um eine neuartige Materialstruktur zu erforschen, die den Anforderungen der Industrie an zukünftige Leistungselektronik weit besser genügen soll.

In dem kürzlich gestarteten Projekt »Erforschung von funktionalen Halbleiterstrukturen für eine energieeffiziente Leistungselektronik« (kurz »Leistungselektronik 2020+«) geht es um das noch unerforschte Halbleitermaterial Scandiumaluminiumnitrid (ScAlN).


Das Fraunhofer IAF entwickelt elektronische Bauteile und Systeme auf GaN-Basis. Hier ist ein prozessierter GaN-Wafer zu sehen.

© Fraunhofer IAF

Prof. Dr. Oliver Ambacher, Institutsleiter des Fraunhofer IAF und Professor für Leistungselektronik am Institut für Nachhaltige Technische Systeme (INATECH) der Universität Freiburg, koordiniert die überregionale Zusammenarbeit.

Verantwortlich für das starke Wachstum des Elektronikmarktes sind drei Hauptfaktoren: die Automatisierung und die Digitalisierung der Industrie sowie das steigende Bewusstsein für ökologische Verantwortung und nachhaltige Prozesse. Der Energieverbrauch kann nur gesenkt werden, wenn elektronische Systeme leistungsfähiger und gleichzeitig energie- und ressourceneffizienter werden.

Silicium-Technologie stößt an ihre physikalischen Grenzen

Bislang dominiert Silicium die Elektronikindustrie. Silicium ist neben seinen relativ geringen Kosten und seiner fast perfekten Kristallstruktur auch deshalb ein besonders erfolgreiches Halbleitermaterial, weil seine Bandlücke sowohl eine gute Ladungsträger-Konzentration und -Geschwindigkeit als auch eine gute Spannungsfestigkeit ermöglicht.

Allerdings stößt die Silicium-Elektronik allmählich an ihre physikalischen Grenzen: Insbesondere in Bezug auf die geforderte Leistungsdichte und Kompaktheit sind leistungselektronische Bauelemente aus Silicium unzureichend.

Neue Materialkomposition für mehr Leistung und Effizienz

Mit dem Einsatz des Halbleiters Galliumnitrid (GaN) in der Leistungselektronik konnten bereits die Limitierungen der Silicium-Technologie überwunden werden. GaN besitzt die Fähigkeit, bei sehr hohen Spannungen, Temperaturen und Schaltfrequenzen eine größere Leistungsfähigkeit als Silicium aufzuweisen und ermöglicht damit eine signifikant höhere Energieeffizienz.

Bei zahlreichen energieaufwendigen Anwendung bedeutet dies eine deutliche Senkung des Energieverbrauchs. Das Fraunhofer IAF erforscht seit Jahren GaN-Halbleiterstrukturen und entwickelt elektronische Bauteile und Systeme auf GaN-Basis. Die Ergebnisse dieser Forschungsarbeiten sind mit Hilfe von industriellen Partnern bereits in kommerziellen Anwendungen im Einsatz.

In dem Projekt »Leistungselektronik 2020+« gehen die Forscherinnen und Forscher nun einen Schritt weiter, um die Energieeffizienz und Lebensdauer zukünftiger Elektroniksysteme noch einmal zu steigern. Dafür soll zusätzlich ein anderes Material erstmalig eingesetzt werden: Scandiumaluminiumnitrid (ScAlN).

Erste Bauteile auf ScAlN-Basis

ScAlN ist ein piezoelektronisches Halbleitermaterial mit einer großen Spannungsfestigkeit, das weltweit für Anwendungen in der Mikroelektronik weitgehend unerforscht ist. »Dass sich Scandiumaluminiumnitrid aufgrund seiner physikalischen Eigenschaften besonders für den Einsatz in leistungselektronischen Bauelementen eignet, konnte bereits nachgewiesen werden«, erklärt Dr.-Ing. Michael Mikulla, Projektleiter auf Seiten des Fraunhofer IAF.

Konkret geht es darum, ScAlN gitterangepasst auf einer GaN-Schicht zu wachsen und mit den daraus hergestellten Heterostrukturen Transistoren mit hoher Stromtragfähigkeit zu prozessieren. »Funktionale Halbleiterstrukturen basierend auf Materialien mit großer Bandlücke wie Scandiumaluminiumnitrid und Galliumnitrid ermöglichen Transistoren für sehr hohe Spannungen und Ströme.

Die Bauelemente erreichen eine höhere Leistungsdichte pro Chip-Fläche sowie größere Schaltgeschwindigkeiten und höhere Betriebstemperaturen, was gleichbedeutend mit geringeren Schaltverlusten, höherer Energieeffizienz und kompakteren Systemen ist«, erläutert Prof. Dr. Oliver Ambacher, Institutsleiter des Fraunhofer IAF.

»Unser Ziel ist es, mit der Materialkombination von GaN und ScAlN die maximal mögliche Ausgangsleistung des Bauelements bei einem deutlich geringeren Energiebedarf zu verdoppeln«, sagt Mikulla.

Pionierarbeit in der Materialforschung

Eine der größten Herausforderungen dieses Projektes ist das Kristallwachstum, da für diese Materialstruktur weder Wachstums-Rezepte noch Erfahrungswerte existieren. Für das Projektteam gilt es, diese Hürde in den nächsten Monaten zu überwinden, um zu reproduzierbaren Resultaten zu gelangen und Schichtstrukturen herzustellen, die erfolgreich für leistungselektronische Anwendungen eingesetzt werden können.

Fachliche Kooperation und Wissenstransfer zwischen Freiburg und Erlangen

Das Forschungsprojekt wird in enger Kooperation zwischen der Universität Freiburg, dem Fraunhofer-Institut für Angewandte Festkörperphysik IAF, dem Leistungszentrum Nachhaltigkeit sowie dem in Erlangen beheimateten Fraunhofer IISB als Mitglied des Leistungszentrum Elektroniksysteme durchgeführt.

Diese neue Form der Zusammenarbeit zwischen der universitären Forschung und der anwendungsbezogenen Entwicklung soll als Modell für zukünftige Projektkooperationen dienen. »Zum einen fördert dieses Modell die Zusammenarbeit mit Unternehmen durch die zeitnahe Überführung von Ergebnissen der Grundlagenforschung in anwendungsorientierte Entwicklungen.

Zum anderen erschließt es Synergien zwischen zwei fachlich komplementären Fraunhofer-Leistungszentren in zwei unterschiedlichen Regionen und verbessert dadurch deren Angebot an potenzielle Kunden aus der Halbleiterindustrie«, begründet Prof. Ambacher die Forschungskooperation.

Über das Fraunhofer IAF

Das Fraunhofer-Institut für Angewandte Festkörperphysik IAF zählt zu den führenden Forschungseinrichtungen auf dem Gebiet der Verbindungshalbleiter. Auf Basis dieser Halbleiter entwickelt es elektronische und optoelektronische Bauelemente sowie integrierte Schaltungen und Systeme. In einem 1000 m² großen Reinraum und weiteren 3000 m2 Laborfläche stehen Epitaxie- und Technologieanlagen sowie Messtechniken bereit, um Hochfrequenz-Schaltungen für die Kommunikationstechnik, Spannungswandler-Module für die Energietechnik, Infrarot- und UV-Detektoren für die Sicherheitstechnik sowie Infrarot-Lasersysteme für die Medizintechnik zu realisieren. Bedeutende Entwicklungen des Instituts sind lichtstarke weiße Leuchtdioden für die Beleuchtungstechnik, energieeffiziente Leistungsverstärker für die mobile Kommunikation und hochempfindliche Laser-Analysesysteme zur Überwachung der Trinkwasserqualität.


https://www.iaf.fraunhofer.de/

Originalpublikation:

https://www.iaf.fraunhofer.de/de/medien/pressemitteilungen/Leistungselektronik20...

Anne-Julie Maurer | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Neues Trocknungsverfahren für Batterieproduktion
21.02.2019 | Hochschule Landshut

nachricht Wie man Wärmeleitung einfriert
21.02.2019 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamanten, die besten Freunde der Quantenwissenschaft - Quantenzustand in Diamanten gemessen

Mithilfe von Kunstdiamanten gelang einem internationalen Forscherteam ein weiterer wichtiger Schritt in Richtung Hightech-Anwendung von Quantentechnologie: Erstmals konnten die Wissenschaftler und Wissenschaftlerinnen den Quantenzustand eines einzelnen Qubits in Diamanten elektrisch zu messen. Ein Qubit gilt als die Grundeinheit der Quanteninformation. Die Ergebnisse der Studie, die von der Universität Ulm koordiniert wurde, erschienen jüngst in der renommierten Fachzeitschrift Science.

Die Quantentechnologie gilt als die Technologie der Zukunft. Die wesentlichen Bausteine für Quantengeräte sind Qubits, die viel mehr Informationen verarbeiten...

Im Focus: Wasser ist homogener als gedacht

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...

Im Focus: Licht von der Rolle – hybride OLED ermöglicht innovative funktionale Lichtoberflächen

Bislang wurden OLEDS ausschließlich als neue Beleuchtungstechnologie für den Einsatz in Leuchten und Lampen verwendet. Dabei bietet die organische Technologie viel mehr: Als Lichtoberfläche, die sich mit den unterschiedlichsten Materialien kombinieren lässt, kann sie Funktionalität und Design unzähliger Produkte verändern und revolutionieren. Beispielhaft für die vielen Anwendungsmöglichkeiten präsentiert das Fraunhofer FEP gemeinsam mit der EMDE development of light GmbH im Rahmen des EU-Projektes PI-SCALE auf der Münchner LOPEC (19. bis 21. März 2019), erstmals in Textildesign integrierte hybride OLEDs.

Als Anbieter von Forschungs- und Entwicklungsdienstleistungen auf dem Gebiet der organischen Elektronik setzt sich das Fraunhofer FEP schon lange mit der...

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Laserverfahren für funktionsintegrierte Composites

Composites vereinen gewinnbringend die Vorteile artungleicher Materialien – und schöpfen damit zum Beispiel Potentiale im Leichtbau aus. Auf der JEC World 2019 im März in Paris präsentieren die Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein breites Spektrum an laserbasierten Technologien für die effiziente Herstellung und Bearbeitung von Verbundmaterialien. Einblicke zu Füge- und Trennverfahren sowie zur Oberflächenstrukturierung erhalten Besucher auf dem Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau AZL, Halle 5A/D17.

Experten des Fraunhofer ILT erforschen und entwickeln Laserprozesse für das wirtschaftliche Fügen, Schneiden, Abtragen oder Bohren von Verbundmaterialien –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung rund um zuverlässige Verbindungen

20.02.2019 | Veranstaltungen

LastMileLogistics Conference in Frankfurt befasst sich mit Lieferkonzepten für Ballungsräume

19.02.2019 | Veranstaltungen

Bildung digital und multikulturell: Große Fachtagung GEBF findet an der Uni Köln statt

18.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neues Trocknungsverfahren für Batterieproduktion

21.02.2019 | Energie und Elektrotechnik

Neue Eintrittspforte für Influenza-Viren entdeckt

21.02.2019 | Biowissenschaften Chemie

Streifen im Genom

21.02.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics