Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues 20-kW-System mit Hochtemperatur-Brennstoffzellen

06.09.2012
Blockheizkraftwerk der nächsten Generation im Dauertest

Jülicher Forscher haben ein neues Demonstrationssystem für Blockheizkraftwerke mit oxidkeramischen Brennstoffzellen (engl. Solid Oxide Fuel Cell; SOFC) in Betrieb genommen. Solche Anlagen können dezentral Strom und Wärme für Wohnhäuser und Industriegebäude produzieren – mit einem deutlich höheren Gesamtwirkungsgrad als große Kraftwerke.


Design der 20-kW-Anlage: Alle Teile im Hochtemperaturbereich sind nach dem in Jülich entwickelten, integrierten Konzept ohne Rohre mit Flachdichtungen kompakt verbunden. Quelle: Forschungszentrum Jülich


Das neue Jülicher 20-kW-Demonstrationssystem für Blockheizkraftwerke mit oxidkeramischen Brennstoffzellen (engl. Solid Oxide Fuel Cell, SOFC). Quelle: Forschungszentrum Jülich

Das neue Jülicher 20-kW-System bietet die Möglichkeit, neben Erdgas auch regenerativ erzeugten Wasserstoff umzusetzen. Es ist ohne Rohrverbindungen im Hochtemperaturbereich aufgebaut und bringt weltweit erstmalig Zellstapel mit einer Einzelleistung von 5 kW zum Einsatz, mit denen sich gut auch größere Anlagenleistungen realisieren lassen.

Die zentrale Stromerzeugung in großen Kraftwerken ist mit deutlichen Verlusten verbunden, weil die Abwärme oft ungenutzt bleibt. In einem Blockheizkraftwerk (BHKW), das den Strom vor Ort produziert, lässt sich die freigesetzte Wärme dagegen zum Heizen verwenden. So kann die eingesetzte Energie fast vollständig genutzt werden. Konventionelle Anlagen dieser Art erzeugen den Strom mit Hilfe von Gasmotoren. Noch effizienter ist es aber, den Strom auf elektrochemischem Weg zu gewinnen – mit Brennstoffzellen, wie sie am Forschungszentrum Jülich entwickelt werden. Die Technologie bietet außerdem eine interessante Option für die Energieversorgung der Zukunft. Mit ihr lässt sich nicht nur Erdgas, sondern auch Wasserstoff verstromen, der großtechnisch aus überschüssigem regenerativem Strom erzeugt und anschließend gespeichert wurde.

„Das neue Demonstrationssystem ist ein wichtiger Schritt hin zum Einsatz von oxidkeramischen Brennstoffzellen in der dezentralen Energieversorgung“, erklärt Arbeitsgruppenleiter Prof. Ludger Blum vom Jülicher Institut für Energie- und Klimaforschung, Bereich Elektrochemische Verfahrenstechnik. „Beim ersten Test hatten wir gleich einen elektrischen Nettowirkungsgrad von 43 Prozent, rund 10 Prozentpunkte besser als ein Gasmotor-Blockheizkraftwerk vergleichbarer Leistung. Und durch relativ einfache Maßnahmen lässt sich dieser Wert noch auf über 50 Prozent steigern.“

Langfristig ist ein Wirkungsgrad von rund 60 Prozent angepeilt. Die Anlage soll sich zunächst bei konstanter Leistung in mehreren Tausend Stunden Dauerbetrieb bewähren. Danach folgen dynamische Tests mit Lastwechseln, für die das System wiederholt abgekühlt und wieder aufgeheizt wird. Als weitere Schritte sind Verbesserungen der Robustheit und Langzeitstabilität geplant.

Die Brennstoffzellen-Module folgen dem in Jülich entwickelten, integrierten Konzept, alle Teile im Hochtemperaturbereich kompakt zu verbinden. Sie bestehen aus dem Hochleistungsstahl Crofer® 22 APU, der vom Forschungszentrum Jülich eigens für diesen Einsatzzweck entwickelt wurde und inzwischen von ThyssenKrupp VDM hergestellt wird. „Der Aufbau bietet mehrere Vorteile“, erläutert Ludger Blum. „Die Module haben eine minimierte Oberfläche und lassen sich gut isolieren. Sie besitzen eine gemeinsame Anschlusstechnik für alle Komponenten, lassen sich von der Größe her gut anpassen und bestehen aus relativ ähnlichen Teilen, was den Aufwand und damit auch die Kosten für die Herstellung verringert.“

Die hohe Betriebstemperatur von oxidkeramischen Brennstoffzellen ermöglicht es, vergleichsweise kostengünstige Elektrodenwerkstoffe einzusetzen und hohe Wirkungsgrade zu erzielen – erfordert aber relativ lange Aufheiz- und Abkühlungsphasen. „Durch den Einsatz neuartiger Hochleistungskathoden arbeitet das Jülicher Demonstrationssystem schon bei einer vergleichsweise niedrigen Betriebstemperatur von etwa 700 Grad Celsius, die es allein durch die Prozesswärme hält“, berichtet Dr. Norbert H. Menzler vom Institut für Energie- und Klimaforschung, Bereich Werkstoffsynthese und Herstellungsverfahren. Die Module sind mit einem Reformer ausgestattet und für die Verwertung von Erdgas ausgelegt, können aber auch direkt mit Wasserstoff betrieben werden.

Weitere Informationen:

Forschung am Institut für Energie- und Klimaforschung,
Bereich Elektrochemische Verfahrenstechnik
http://www.fz-juelich.de/iek/iek-3/DE/Forschung/forschung_node.html;
jsessionid=92FF3C06489B1075780F2798D4658990

Ansprechpartner:
Prof. Ludger Blum, Institut für Energie- und Klimaforschung, Bereich Elektrochemische Verfahrenstechnik (IEK-3)
Tel. 02461 61-6709
l.blum@fz-juelich.de
Dr. Norbert H. Menzler, Institut für Energie- und Klimaforschung, Bereich Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Tel. 02461 61-3059
n.h.menzler@fz-juelich.de

Pressekontakt:
Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht AgiloBat: Batteriezellen flexibel produzieren
17.02.2020 | Karlsruher Institut für Technologie (KIT)

nachricht Innovative Power-to-Gas-Technologien für die Energiewende
11.02.2020 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics