Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Beleuchtungsmethode verbessert Qualität von Visualisierungen

03.04.2012
Von Computerspielen in die Wissenschaft

Simulationen sind aus vielen Bereichen in Forschung, Industrie oder der Medizin nicht mehr wegzudenken. Die Menge der Daten und ihre Komplexität steigt, und die Betrachtungszeiträume werden länger. Daher ist es ist eine große Herausforderung, Prozesse möglichst realistisch zu untersuchen, ohne die verfügbaren Rechenleistungen zu sprengen.


Visualisierung eines Virus mit 220.000 Atomen. Links: klassische Beleuchtung in Echtzeitcomputergrafik. Rechts: die Beleuchtung mit Ambient Occlusion macht die Oberflächenstruktur erheblich besser sichtbar. Universität Stuttgart/SFB 716


Ein Laser sprengt Atome aus einem Aluminium-Block. Links: klassische Beleuchtung. Rechts: die Beleuchtung mit Ambient Occlusion stellt den Krater entsprechend seiner Form und Tiefe dar und ermöglicht es, die Struktur besser zu erkennen. Universität Stuttgart/SFB 716

Wissenschaftler des Visualisierungsinstitutes der Universität Stuttgart haben nun im Rahmen des Sonderforschungsbereiches (SFB) 716 ein Verfahren entwickelt, das die Qualität virtueller Bilder erheblich verbessert und gleichzeitig schnell genug ist, um komplexe, dynamische Simulationen effizient auf handelsüblichen Computern zu analysieren. Hierzu machen sie sich eine Beleuchtungs-Methodik zu Nutze, die von Computerspielen bekannt ist.

Wann bricht Metall unter mechanischen oder thermischen Belastungen? Unter welchen Bedingungen binden sich Fette an Waschmittel? Wann nutzen sich Verschleißteile einer hydraulischen Maschine ab? Simulationen ermöglichen es, diese Fragen zu beantworten und Prozesse zu optimieren, bei denen Experimente nicht oder nur mit unverhältnismäßigem Aufwand durchführbar sind. Voraussetzung für eine effektive Analyse ist jedoch eine hohe Bildqualität. Dazu gehört eine optimale Beleuchtung. Doch das ist einfacher gesagt als getan: Die auszuwertenden Datensätze erreichen viele Gigabyte und enthalten oft mehrere Millionen Partikel pro Zeitschritt. Eine lange Beobachtungsdauer potenziert die zu verarbeitende Informationsflut zusätzlich.

Realistische Bilder auf handelsüblichen Rechnern

Beleuchtungs-Modelle der klassischen Echtzeitcomputergrafik sind für solche umfangreichen Simulationen nicht geeignet. Die Beleuchtung photometrisch exakt zu berechnen, sprengt dagegen schnell die verfügbare Rechenkapazität und verlängert den Analyseprozess unnötig. Auf der Suche nach Alternativen haben Forscher des SFB 716 nun eine aus der Computergrafik bekannte Methodik auf wissenschaftliche Darstellungen übertragen. Mit dem sogenannten „Ambient Occlusion Verfahren“ werden üblicherweise Szenen für Computerspiele berechnet. Die Darstellungsqualität von Daten aus Partikelsimulationen hat sich dadurch enorm verbessert. „Was man sieht, ist zwar physikalisch nicht ganz korrekt, aber der Eindruck ist mit einer realen Beleuchtungssituation vergleichbar. Zudem ist das Verfahren schnell genug, um die Visualisierungen auf handelsüblichen Rechnern zu berechnen“, beschreibt Sebastian Grottel seine gemeinsam mit Kollegen entwickelte Arbeit.

Von Medizin bis Materialbearbeitung

Erste Anwendung fand die Methode bei der Untersuchung von sogenannten Laserablationen, dem Abtragen von Material mit Laserstrahlen. Dieses Verfahren wird unter anderem in der minimalinvasiven Chirurgie oder bei der Behandlung von Hauterkrankungen eingesetzt, aber auch in verschiedenen Sparten der Materialbearbeitung, so bei Gravierungen auf mikroskopischer Skala, Reinigungs- oder Beschichtungsprozessen. Dabei kommt es zu Wechselwirkungen zwischen verdampftem Material und dem Laserstrahl, was dazu führt, dass ein Teil der winzig kleinen abgetragenen Teilchen die Materialoberfläche beeinträchtigt. Mit dem neuen Beleuchtungsverfahren können die Wissenschaftler diese Prozesse leichter analysieren, da sich die Tiefe der entstandenen Krater sowie die Menge und Größe des ausgeschleuderten Materials wesentlich besser einschätzen lassen.

Ebenso profitieren Biochemiker und Pharmazeuten von dieser Methodik: Denn um Medikamente zu entwickeln und verbessern, sind konkrete Informationen zu Oberfläche und Form von Makromolekülen wie Proteine, Viren und Bakterien erforderlich. Beispielsweise müssen reagierende Antikörper nicht nur in ihrer chemischen Zusammensetzung, sondern auch durch ihre Form wie ein Puzzleteil exakt an die Oberfläche eines Virus passen. Solche Informationen sind nun wesentlich detaillierter und präziser zu erkennen. Das Verfahren wurde im März auf der internationalen Visualisierungskonferenz Pacific VIS 2012 in Songdo in Korea vorgestellt. Langfristig wird es in umfangreiche Visualisierungssoftware-pakete integriert, so dass Wissenschaftler und Ingenieure an Universitäten und in der Industrie zur Auswertung von Simulationsdaten darauf zugreifen können.

Weitere Informationen bei Tina Barthelmes, Universität Stuttgart, Sonderforschungsbereich 716 (Dynamische Simulation von Systemen mit großen Teilchenzahlen), Tel. 0711/685-88604, e-mail: tina.barthelmes@sfb716.uni-stuttgart.de, http://www.sfb716.uni-stuttgart.de

Originalveröffentlichung:
Grottel, Sebastian; Krone, Michael; Scharnowski, Katrin; Ertl, Thomas: Object-Space Ambient Occlusion for Molecular Dynamics.

In: Proceedings of IEEE Pacific Visualization Symposium 2012 (2012)

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.sfb716.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Fraunhofer IZM setzt das E-Auto auf die Überholspur
11.10.2019 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht TU Ilmenau nimmt deutschlandweit einzigartigen Echtzeit-Simulator für Energiesysteme in Betrieb
10.10.2019 | Technische Universität Ilmenau

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rezeptorkomplexe am Fließband

15.10.2019 | Biowissenschaften Chemie

Quantenbits ins Glasfasernetz bringen: Start des Projekts QFC-4-1QID

15.10.2019 | Physik Astronomie

Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

15.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics