Nano im Tank: UDE-Forscher entwickeln Batterien aus winzigen Partikeln

Für ihren Einsatz in Elektrofahrzeugen müssen Batterien vor allem leicht sein und schnell viel Energie liefern. Deshalb stehen Batterien mit maximaler Leistung, häufigen Lade- und Entladezyklen sowie geringem Preis im Fokus der Forschung. Die besten Aussichten für deren Produktion bieten winzigste Partikel. Unter der Leitung von CeNIDE forscht das NanoEnergieTechnikZentrum (NETZ) daher an nanoskaligem Silizium-Kohlenstoff-Kompositmaterial für die Elektroden von Lithium-Ionen-Batterien.

Höhere Speicherdichte und mehr Leistung

Lange Zeit fehlte es schlicht an ausreichenden Mengen von Nano-Material, um neue Technologien zu testen oder gar zu produzieren. Doch seit 2009 steht im Duisburger Institut für Energie- und Umwelttechnik e.V. (IUTA) eine Anlage zur Herstellung kleinster Partikel mit definierten Eigenschaften im Kilogramm-Maßstab. So entstehen hier auch nanoskalige Siliziumpartikel, die CeNIDE-Forscher für die Weiterentwicklung der Lithium-Ionen-Batterie verwenden: Eingebettet in eine Matrix aus Kohlenstoff verbessern die winzigen Silizium-Partikel in den Elektroden Speicherdichte und Leistung der Batterien.

„Wir sind optimistisch, dass wir innerhalb der nächsten zwei Jahre die wichtigsten Tests durchgeführt haben und dann in die Industrialisierung der Prozesse gehen können“, berichtet Prof. Dr. Christof Schulz, der mit über 50 Wissenschaftlern an dem Thema arbeitet. „In der Serienproduktion können wir dadurch nicht nur die Energiedichte der Batterien erhöhen, sondern auch die Kosten zusätzlich um sieben Prozent senken.“

Die Forschung an Lithium-Ionen-Batterien konzentriert sich derzeit darauf, die Kapazität dieser Speicher zu steigern, um längere Laufzeiten zu ermöglichen. Bisher dienen Graphit-Elektroden als die oben beschriebenen „Speicher“ für Lithium-Atome. Eine aussichtsreiche Alternative stellt Silizium dar, das bei gleichem Volumen deutlich mehr Lithium aufnehmen kann. Das Problem ist jedoch die damit zusammenhängende Volumenveränderung: Speichert eine Graphitelektrode Lithium, vergrößert sie sich um neun Prozent, im Fall einer Siliziumelektrode sind es 300 Prozent.

Nano-Silizium ist stabiler

Das Einlagern des Lithiums führt daher zu mechanischen Schäden an der Siliziummatrix, die auf Dauer zu einer Kapazitätsverringerung führen. Hier kommt nun der Vorteil des nanoskaligen Siliziums zum Tragen: Es ist aufgrund seiner geringen Größe und der Porosität der zusammenhängenden Partikel deutlich stabiler als sein makroskopisches Pendant. Ein Kompositmaterial aus Siliziumpartikeln, eingebettet in eine Matrix aus Kohlenstoff, kann daher Eigenschaften wie gute Leitfähigkeit, hohe Speicherdichte und Stabilität vereinen.

Bereits in der Vergangenheit konnten die Duisburger Forscher wesentliche Beiträge zur Weiterentwicklung der Lithium-Ionen-Batterien liefern. So arbeiteten die UDE-Wissenschaftler eng mit EVONIK an der Entwicklung eines keramischen Separators für Lithium-Ionen Batterien, der Temperaturen bis zu 700 Grad Celsius verträgt und damit wesentlich die Sicherheit der Batterien steigert. Hier spielt das Kleinste eben die größte Rolle.

Weitere Informationen: Prof. Dr. Christof Schulz, Tel: 0203/379-3995, Christof.Schulz@uni-due.de, http://www.uni-duisburg-essen.de/ivg/vg

Redaktion: Birte Vierjahn, Tel. 0203/379-1456, birte.vierjahn@uni-due.de

Media Contact

Beate Kostka idw

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer