Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Silber-Atom Licht ein- und ausschalten

01.02.2016

Forscher um Jürg Leuthold, Professor für Photonik und Kommunikation an der ETH Zürich, haben den kleinsten integriert optischen Schalter der Welt geschaffen. Durch das Anlegen einer kleinen Spannung wird ein Atom verschoben und der Schalter ist an- oder ausgeschaltet.

Die Menge an Daten, die weltweit über Kommunikationsnetzwerke ausgetauscht werden, steigt mit atemberaubender Rate an. Zurzeit nimmt die Datenmenge für drahtgebundene und mobile Kommunikation jedes Jahr um 23 beziehungsweise 57 Prozent zu. Ein Ende dieses Wachstums ist nicht absehbar. Das bedeutet aber auch, dass sämtliche Netzwerk-Komponenten immer effizienter werden müssen.


Der Schalter basiert auf der spannungsbedingten Verschiebung eines oder mehrerer Silberatome in den schmalen Spalt zwischen einer Silber- und einer Platinplatte.

Alexandros Emboras / ETH Zürich

Zu diesen Komponenten gehören sogenannte Modulatoren, welche die Information, die zunächst in elektrischer Form vorliegt, in optische Signale umwandeln. Modulatoren sind also nichts anderes als schnelle elektrische Schalter, welche ein Lasersignal im Takt der eingehenden elektrischen Signale an- oder ausschalten. Modulatoren werden in Rechenzentren zu Tausenden verbaut. Diese haben allerdings noch immer den Nachteil, dass sie ziemlich gross sind. Sie messen einige Zentimeter und brauchen, in grosser Zahl eingesetzt, viel Platz.

Vom Mikro- zum Nanomodulator

Dass es kleiner und energieeffizienter geht, bewies die Arbeitsgruppe von Jürg Leuthold, Professor für Photonik und Kommunikation, schon vor einem halben Jahr. Damals stellten die Forscher einen Mikromodulator vor, der nur noch 10 Mikrometer misst und damit um den Faktor 10‘000 kleiner ist als kommerziell verwendete Modulatoren (siehe ETH-News).

Nun legen Leuthold und seine Mitarbeiter noch einen Zahn zu. Sie entwickelten den kleinsten optischen Modulator der Welt. Ihre neuste Entwicklung wurde soeben in der Fachzeitschrift «Nano Letters» vorgestellt.

Kleiner geht es wohl nicht mehr: Dieses Bauteil arbeitet auf dem Niveau von einzelnen Atomen. Dies entspricht einer weiteren Verkleinerung um den Faktor 1000, wenn man den Schalter samt Lichtleiter miteinbezieht. Der eigentliche Schalter ist allerdings noch kleiner – atomar klein. Der Modulator ist sogar wesentlich kleiner als die Wellenlänge des verwendeten Lichts. Für die optische Signalübertragung in der Telekommunikation wird Laserlicht von einer Wellenlänge von 1,55 Mikrometer benutzt. Normalerweise bestimmt diese Grösse die kleinstmögliche Dimension des Bauteils. «Bis vor kurzem hielt selbst ich es für unmöglich, dass wir dieses Limit noch unterbieten können», betont Leuthold.

Neuer Aufbau

Doch sein wissenschaftlicher Mitarbeiter Alexandros Emboras hat die Gesetze der Optik Lügen gestraft, indem er eine neue Anordnung für den Bau eines Modulators realisierte. Dieser Aufbau hat es ermöglicht, in die Grössenordnung von einzelnen Atomen vorzudringen, obwohl die Forscher Licht mit «Standard-Wellenlänge» verwendeten.

Emboras Modulator besteht aus zwei winzigen Plättchen, einem aus Silber und einem aus Platin, auf einem Lichtwellenleiter aus Silizium. Die beiden Plättchen sind in einem Abstand von bloss wenigen Nanometern nebeneinander angeordnet, wobei eine kleine Ausbuchtung des Silberplättchens in den Spalt hineinragt und das Platinplättchen beinahe berührt.

Kurzschluss dank Silberatom

Und so funktioniert der Modulator: Licht, das aus einer Glasfaser austritt, wird über den Lichtwellenleiter zum Eingang des Spalts geleitet. Über der metallischen Oberfläche wandelt sich das Licht in ein Oberflächen-Plasmon um. Von Plasmonen spricht man, wenn Licht die Energie an Elektronen der äussersten Atomschicht der Metalloberfläche abgibt und diese zu Schwingungen anregt.

Diese Elektronenoszillationen haben einen viel geringeren Durchmesser als der Lichtstrahl selbst. So können diese in den Spalt eindringen und die enge Stelle passieren. Auf der anderen Seite des Spaltes können die Elektronenschwingungen wieder in optische Signale umgewandelt werden.

Legt man nun an das Silberplättchen eine Spannung an, wandert ein einzelnes – höchstens aber ein paar wenige - Silberatom zur Spitze des Zahns und platzieren sich an dessen Ende. Dadurch werden die Silber- und Platinplättchen miteinander kurzgeschlossen, so dass zwischen ihnen ein elektrischer Strom fliesst. Dies schliesst das Schlupfloch für das Plasmon; der Schalter kippt und der Zustand wechselt von «An» auf «Aus» oder umgekehrt. Sobald die Spannung wieder unter einen gewissen Schwellenwert sinkt, wandert ein Silber-Atom zurück. Die Lücke öffnet sich, das Plasmon fliesst, der Schalter steht wieder auf «An». Dieser Vorgang lässt sich millionenfach wiederholen.

Der an dieser Arbeit beteiligte ETH-Professor Mathieu Luisier hat das System mit einem Hochleistungsrechner am CSCS in Lugano simuliert. Damit konnte er bestätigen, dass der Kurzschluss an der Spitze des Silberzahns aufgrund eines einzigen Atoms zustande kommt.

Echtes digitales Signal

Da sich das Plasmon nur entweder ganz oder gar nicht durch die Engstelle bewegt, entsteht ein echtes digitales Signal – eine Eins oder eine Null. «Damit erzielen wir eine digitale Schaltung wie bei einem Transistor. Nach einer solchen Lösung haben wir lange gesucht», sagt Leuthold.

Noch ist der Modulator nicht serienreif. Zwar hat er den Vorteil, dass er – anders als andere Geräte, die in diesen Dimensionen mit Quanteneffekten arbeiten –bei Raumtemperatur läuft. Doch für einen Modulator ist er noch recht langsam: Bis anhin funktioniert er nur für Schaltfrequenzen bis in den Megahertz-Bereich. Die ETH Forscher möchten ihn noch für Frequenzen im Giga- bis Terahertz-Bereich trimmen.

Lithographie-Verfahren verbessern

Auch die Lithografie-Methode, die Emboras für den Bau der Teile von Grund auf neu entwickelte, wollen sie weiter verbessern, so dass solche Bauteile in Zukunft zuverlässig erstellt werden können. Derzeit gelingt die Herstellung nur in einem von sechs Versuchen. Dies werten die Forscher allerdings bereits als Erfolg, da Lithographie-Verfahren auf der atomaren Skala Neuland sind.

Um die Forschung am Nano-Modulator weiterzuführen, hat Leuthold sein Team verstärkt. Um eine kommerziell verfügbare Lösung zu erarbeiten, wären jedoch mehr Ressourcen nötig, gibt er zu bedenken. Trotzdem ist der ETH-Professor überzeugt, mit seinem Team in den kommenden Jahren eine praktikable Lösung präsentieren zu können.

Literaturhinweis

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, Atomic Scale Plasmonic Switch, Nano Letters 16, 709-714 (2016). DOI: 10.1021/acs.nanolett.5b04537

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/02/atomarer-o...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Chillventa 2018: Fraunhofer ISE rückt Wärmepumpen in den Fokus
12.10.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Mikro-Energiesammler für das Internet der Dinge
11.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics