Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Silber-Atom Licht ein- und ausschalten

01.02.2016

Forscher um Jürg Leuthold, Professor für Photonik und Kommunikation an der ETH Zürich, haben den kleinsten integriert optischen Schalter der Welt geschaffen. Durch das Anlegen einer kleinen Spannung wird ein Atom verschoben und der Schalter ist an- oder ausgeschaltet.

Die Menge an Daten, die weltweit über Kommunikationsnetzwerke ausgetauscht werden, steigt mit atemberaubender Rate an. Zurzeit nimmt die Datenmenge für drahtgebundene und mobile Kommunikation jedes Jahr um 23 beziehungsweise 57 Prozent zu. Ein Ende dieses Wachstums ist nicht absehbar. Das bedeutet aber auch, dass sämtliche Netzwerk-Komponenten immer effizienter werden müssen.


Der Schalter basiert auf der spannungsbedingten Verschiebung eines oder mehrerer Silberatome in den schmalen Spalt zwischen einer Silber- und einer Platinplatte.

Alexandros Emboras / ETH Zürich

Zu diesen Komponenten gehören sogenannte Modulatoren, welche die Information, die zunächst in elektrischer Form vorliegt, in optische Signale umwandeln. Modulatoren sind also nichts anderes als schnelle elektrische Schalter, welche ein Lasersignal im Takt der eingehenden elektrischen Signale an- oder ausschalten. Modulatoren werden in Rechenzentren zu Tausenden verbaut. Diese haben allerdings noch immer den Nachteil, dass sie ziemlich gross sind. Sie messen einige Zentimeter und brauchen, in grosser Zahl eingesetzt, viel Platz.

Vom Mikro- zum Nanomodulator

Dass es kleiner und energieeffizienter geht, bewies die Arbeitsgruppe von Jürg Leuthold, Professor für Photonik und Kommunikation, schon vor einem halben Jahr. Damals stellten die Forscher einen Mikromodulator vor, der nur noch 10 Mikrometer misst und damit um den Faktor 10‘000 kleiner ist als kommerziell verwendete Modulatoren (siehe ETH-News).

Nun legen Leuthold und seine Mitarbeiter noch einen Zahn zu. Sie entwickelten den kleinsten optischen Modulator der Welt. Ihre neuste Entwicklung wurde soeben in der Fachzeitschrift «Nano Letters» vorgestellt.

Kleiner geht es wohl nicht mehr: Dieses Bauteil arbeitet auf dem Niveau von einzelnen Atomen. Dies entspricht einer weiteren Verkleinerung um den Faktor 1000, wenn man den Schalter samt Lichtleiter miteinbezieht. Der eigentliche Schalter ist allerdings noch kleiner – atomar klein. Der Modulator ist sogar wesentlich kleiner als die Wellenlänge des verwendeten Lichts. Für die optische Signalübertragung in der Telekommunikation wird Laserlicht von einer Wellenlänge von 1,55 Mikrometer benutzt. Normalerweise bestimmt diese Grösse die kleinstmögliche Dimension des Bauteils. «Bis vor kurzem hielt selbst ich es für unmöglich, dass wir dieses Limit noch unterbieten können», betont Leuthold.

Neuer Aufbau

Doch sein wissenschaftlicher Mitarbeiter Alexandros Emboras hat die Gesetze der Optik Lügen gestraft, indem er eine neue Anordnung für den Bau eines Modulators realisierte. Dieser Aufbau hat es ermöglicht, in die Grössenordnung von einzelnen Atomen vorzudringen, obwohl die Forscher Licht mit «Standard-Wellenlänge» verwendeten.

Emboras Modulator besteht aus zwei winzigen Plättchen, einem aus Silber und einem aus Platin, auf einem Lichtwellenleiter aus Silizium. Die beiden Plättchen sind in einem Abstand von bloss wenigen Nanometern nebeneinander angeordnet, wobei eine kleine Ausbuchtung des Silberplättchens in den Spalt hineinragt und das Platinplättchen beinahe berührt.

Kurzschluss dank Silberatom

Und so funktioniert der Modulator: Licht, das aus einer Glasfaser austritt, wird über den Lichtwellenleiter zum Eingang des Spalts geleitet. Über der metallischen Oberfläche wandelt sich das Licht in ein Oberflächen-Plasmon um. Von Plasmonen spricht man, wenn Licht die Energie an Elektronen der äussersten Atomschicht der Metalloberfläche abgibt und diese zu Schwingungen anregt.

Diese Elektronenoszillationen haben einen viel geringeren Durchmesser als der Lichtstrahl selbst. So können diese in den Spalt eindringen und die enge Stelle passieren. Auf der anderen Seite des Spaltes können die Elektronenschwingungen wieder in optische Signale umgewandelt werden.

Legt man nun an das Silberplättchen eine Spannung an, wandert ein einzelnes – höchstens aber ein paar wenige - Silberatom zur Spitze des Zahns und platzieren sich an dessen Ende. Dadurch werden die Silber- und Platinplättchen miteinander kurzgeschlossen, so dass zwischen ihnen ein elektrischer Strom fliesst. Dies schliesst das Schlupfloch für das Plasmon; der Schalter kippt und der Zustand wechselt von «An» auf «Aus» oder umgekehrt. Sobald die Spannung wieder unter einen gewissen Schwellenwert sinkt, wandert ein Silber-Atom zurück. Die Lücke öffnet sich, das Plasmon fliesst, der Schalter steht wieder auf «An». Dieser Vorgang lässt sich millionenfach wiederholen.

Der an dieser Arbeit beteiligte ETH-Professor Mathieu Luisier hat das System mit einem Hochleistungsrechner am CSCS in Lugano simuliert. Damit konnte er bestätigen, dass der Kurzschluss an der Spitze des Silberzahns aufgrund eines einzigen Atoms zustande kommt.

Echtes digitales Signal

Da sich das Plasmon nur entweder ganz oder gar nicht durch die Engstelle bewegt, entsteht ein echtes digitales Signal – eine Eins oder eine Null. «Damit erzielen wir eine digitale Schaltung wie bei einem Transistor. Nach einer solchen Lösung haben wir lange gesucht», sagt Leuthold.

Noch ist der Modulator nicht serienreif. Zwar hat er den Vorteil, dass er – anders als andere Geräte, die in diesen Dimensionen mit Quanteneffekten arbeiten –bei Raumtemperatur läuft. Doch für einen Modulator ist er noch recht langsam: Bis anhin funktioniert er nur für Schaltfrequenzen bis in den Megahertz-Bereich. Die ETH Forscher möchten ihn noch für Frequenzen im Giga- bis Terahertz-Bereich trimmen.

Lithographie-Verfahren verbessern

Auch die Lithografie-Methode, die Emboras für den Bau der Teile von Grund auf neu entwickelte, wollen sie weiter verbessern, so dass solche Bauteile in Zukunft zuverlässig erstellt werden können. Derzeit gelingt die Herstellung nur in einem von sechs Versuchen. Dies werten die Forscher allerdings bereits als Erfolg, da Lithographie-Verfahren auf der atomaren Skala Neuland sind.

Um die Forschung am Nano-Modulator weiterzuführen, hat Leuthold sein Team verstärkt. Um eine kommerziell verfügbare Lösung zu erarbeiten, wären jedoch mehr Ressourcen nötig, gibt er zu bedenken. Trotzdem ist der ETH-Professor überzeugt, mit seinem Team in den kommenden Jahren eine praktikable Lösung präsentieren zu können.

Literaturhinweis

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, Atomic Scale Plasmonic Switch, Nano Letters 16, 709-714 (2016). DOI: 10.1021/acs.nanolett.5b04537

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/02/atomarer-o...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Batterieforschung an der TU Graz: Neue Forschungserfolge auf dem Weg zur Super-Batterie
25.04.2019 | Technische Universität Graz

nachricht Neuer LED-Leuchtstoff spart Energie
24.04.2019 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Volle Fahrt voraus für SmartEEs auf der Automotive Interiors Expo 2019

Flexible, organische und gedruckte Elektronik erobert den Alltag. Die Wachstumsprognosen verheißen wachsende Märkte und Chancen für die Industrie. In Europa beschäftigen sich Top-Einrichtungen und Unternehmen mit der Forschung und Weiterentwicklung dieser Technologien für die Märkte und Anwendungen von Morgen. Der Zugang seitens der KMUs ist dennoch schwer. Das europäische Projekt SmartEEs - Smart Emerging Electronics Servicing arbeitet an der Etablierung eines europäischen Innovationsnetzwerks, das sowohl den Zugang zu Kompetenzen als auch die Unterstützung der Unternehmen bei der Übernahme von Innovationen und das Voranschreiten bis zur Kommerzialisierung unterstützt.

Sie umgibt uns und begleitet uns fast unbewusst durch den Alltag – gedruckte Elektronik. Sie beginnt bei smarten Labels oder RFID-Tags in der Kleidung,...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Neuer LED-Leuchtstoff spart Energie

Das menschliche Auge ist für Grün besonders empfindlich, für Blau und Rot hingegen weniger. Chemiker um Hubert Huppertz von der Universität Innsbruck haben nun einen neuen roten Leuchtstoff entwickelt, dessen Licht vom Auge gut wahrgenommen wird. Damit lässt sich die Lichtausbeute von weißen LEDs um rund ein Sechstel steigern, was die Energieeffizienz von Beleuchtungssystemen deutlich verbessern kann.

Leuchtdioden oder LEDs können nur Licht einer bestimmten Farbe erzeugen. Mit unterschiedlichen Verfahren zur Farbmischung lässt sich aber auch weißes Licht...

Im Focus: Münchner Lichtquanten-Destillerie

Garchinger Physiker entwickeln eine Technik, um reine einzelne Photonen zu extrahieren

Das Destillieren von Spirituosen steigert den Gehalt von Alkohol relativ zum Wasseranteil. Ähnlich wirkt eine Methode auf Lichtquanten, Photonen, die ein Team...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie sieht das Essen der Zukunft aus?

25.04.2019 | Veranstaltungen

Künstliche Intelligenz: Lernen von der Natur

17.04.2019 | Veranstaltungen

Mobilität im Umbruch – Conference on Future Automotive Technology, 7.-8. Mai 2019, Fürstenfeldbruck

17.04.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

UKP-Laser erobern Makrobearbeitung

25.04.2019 | Verfahrenstechnologie

Kraftwerk ohne DNA

25.04.2019 | Biowissenschaften Chemie

Chemische Reaktionen per Licht antreiben

25.04.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics