Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Silber-Atom Licht ein- und ausschalten

01.02.2016

Forscher um Jürg Leuthold, Professor für Photonik und Kommunikation an der ETH Zürich, haben den kleinsten integriert optischen Schalter der Welt geschaffen. Durch das Anlegen einer kleinen Spannung wird ein Atom verschoben und der Schalter ist an- oder ausgeschaltet.

Die Menge an Daten, die weltweit über Kommunikationsnetzwerke ausgetauscht werden, steigt mit atemberaubender Rate an. Zurzeit nimmt die Datenmenge für drahtgebundene und mobile Kommunikation jedes Jahr um 23 beziehungsweise 57 Prozent zu. Ein Ende dieses Wachstums ist nicht absehbar. Das bedeutet aber auch, dass sämtliche Netzwerk-Komponenten immer effizienter werden müssen.


Der Schalter basiert auf der spannungsbedingten Verschiebung eines oder mehrerer Silberatome in den schmalen Spalt zwischen einer Silber- und einer Platinplatte.

Alexandros Emboras / ETH Zürich

Zu diesen Komponenten gehören sogenannte Modulatoren, welche die Information, die zunächst in elektrischer Form vorliegt, in optische Signale umwandeln. Modulatoren sind also nichts anderes als schnelle elektrische Schalter, welche ein Lasersignal im Takt der eingehenden elektrischen Signale an- oder ausschalten. Modulatoren werden in Rechenzentren zu Tausenden verbaut. Diese haben allerdings noch immer den Nachteil, dass sie ziemlich gross sind. Sie messen einige Zentimeter und brauchen, in grosser Zahl eingesetzt, viel Platz.

Vom Mikro- zum Nanomodulator

Dass es kleiner und energieeffizienter geht, bewies die Arbeitsgruppe von Jürg Leuthold, Professor für Photonik und Kommunikation, schon vor einem halben Jahr. Damals stellten die Forscher einen Mikromodulator vor, der nur noch 10 Mikrometer misst und damit um den Faktor 10‘000 kleiner ist als kommerziell verwendete Modulatoren (siehe ETH-News).

Nun legen Leuthold und seine Mitarbeiter noch einen Zahn zu. Sie entwickelten den kleinsten optischen Modulator der Welt. Ihre neuste Entwicklung wurde soeben in der Fachzeitschrift «Nano Letters» vorgestellt.

Kleiner geht es wohl nicht mehr: Dieses Bauteil arbeitet auf dem Niveau von einzelnen Atomen. Dies entspricht einer weiteren Verkleinerung um den Faktor 1000, wenn man den Schalter samt Lichtleiter miteinbezieht. Der eigentliche Schalter ist allerdings noch kleiner – atomar klein. Der Modulator ist sogar wesentlich kleiner als die Wellenlänge des verwendeten Lichts. Für die optische Signalübertragung in der Telekommunikation wird Laserlicht von einer Wellenlänge von 1,55 Mikrometer benutzt. Normalerweise bestimmt diese Grösse die kleinstmögliche Dimension des Bauteils. «Bis vor kurzem hielt selbst ich es für unmöglich, dass wir dieses Limit noch unterbieten können», betont Leuthold.

Neuer Aufbau

Doch sein wissenschaftlicher Mitarbeiter Alexandros Emboras hat die Gesetze der Optik Lügen gestraft, indem er eine neue Anordnung für den Bau eines Modulators realisierte. Dieser Aufbau hat es ermöglicht, in die Grössenordnung von einzelnen Atomen vorzudringen, obwohl die Forscher Licht mit «Standard-Wellenlänge» verwendeten.

Emboras Modulator besteht aus zwei winzigen Plättchen, einem aus Silber und einem aus Platin, auf einem Lichtwellenleiter aus Silizium. Die beiden Plättchen sind in einem Abstand von bloss wenigen Nanometern nebeneinander angeordnet, wobei eine kleine Ausbuchtung des Silberplättchens in den Spalt hineinragt und das Platinplättchen beinahe berührt.

Kurzschluss dank Silberatom

Und so funktioniert der Modulator: Licht, das aus einer Glasfaser austritt, wird über den Lichtwellenleiter zum Eingang des Spalts geleitet. Über der metallischen Oberfläche wandelt sich das Licht in ein Oberflächen-Plasmon um. Von Plasmonen spricht man, wenn Licht die Energie an Elektronen der äussersten Atomschicht der Metalloberfläche abgibt und diese zu Schwingungen anregt.

Diese Elektronenoszillationen haben einen viel geringeren Durchmesser als der Lichtstrahl selbst. So können diese in den Spalt eindringen und die enge Stelle passieren. Auf der anderen Seite des Spaltes können die Elektronenschwingungen wieder in optische Signale umgewandelt werden.

Legt man nun an das Silberplättchen eine Spannung an, wandert ein einzelnes – höchstens aber ein paar wenige - Silberatom zur Spitze des Zahns und platzieren sich an dessen Ende. Dadurch werden die Silber- und Platinplättchen miteinander kurzgeschlossen, so dass zwischen ihnen ein elektrischer Strom fliesst. Dies schliesst das Schlupfloch für das Plasmon; der Schalter kippt und der Zustand wechselt von «An» auf «Aus» oder umgekehrt. Sobald die Spannung wieder unter einen gewissen Schwellenwert sinkt, wandert ein Silber-Atom zurück. Die Lücke öffnet sich, das Plasmon fliesst, der Schalter steht wieder auf «An». Dieser Vorgang lässt sich millionenfach wiederholen.

Der an dieser Arbeit beteiligte ETH-Professor Mathieu Luisier hat das System mit einem Hochleistungsrechner am CSCS in Lugano simuliert. Damit konnte er bestätigen, dass der Kurzschluss an der Spitze des Silberzahns aufgrund eines einzigen Atoms zustande kommt.

Echtes digitales Signal

Da sich das Plasmon nur entweder ganz oder gar nicht durch die Engstelle bewegt, entsteht ein echtes digitales Signal – eine Eins oder eine Null. «Damit erzielen wir eine digitale Schaltung wie bei einem Transistor. Nach einer solchen Lösung haben wir lange gesucht», sagt Leuthold.

Noch ist der Modulator nicht serienreif. Zwar hat er den Vorteil, dass er – anders als andere Geräte, die in diesen Dimensionen mit Quanteneffekten arbeiten –bei Raumtemperatur läuft. Doch für einen Modulator ist er noch recht langsam: Bis anhin funktioniert er nur für Schaltfrequenzen bis in den Megahertz-Bereich. Die ETH Forscher möchten ihn noch für Frequenzen im Giga- bis Terahertz-Bereich trimmen.

Lithographie-Verfahren verbessern

Auch die Lithografie-Methode, die Emboras für den Bau der Teile von Grund auf neu entwickelte, wollen sie weiter verbessern, so dass solche Bauteile in Zukunft zuverlässig erstellt werden können. Derzeit gelingt die Herstellung nur in einem von sechs Versuchen. Dies werten die Forscher allerdings bereits als Erfolg, da Lithographie-Verfahren auf der atomaren Skala Neuland sind.

Um die Forschung am Nano-Modulator weiterzuführen, hat Leuthold sein Team verstärkt. Um eine kommerziell verfügbare Lösung zu erarbeiten, wären jedoch mehr Ressourcen nötig, gibt er zu bedenken. Trotzdem ist der ETH-Professor überzeugt, mit seinem Team in den kommenden Jahren eine praktikable Lösung präsentieren zu können.

Literaturhinweis

A. Emboras, J. Niegemann, P. Ma, C. Haffner, A. Pedersen, M. Luisier, C. Hafner, T. Schimmel, and J. Leuthold, Atomic Scale Plasmonic Switch, Nano Letters 16, 709-714 (2016). DOI: 10.1021/acs.nanolett.5b04537

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/02/atomarer-o...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?
10.07.2020 | Technische Universität Ilmenau

nachricht KIT forscht in vier neuen Batterie-Kompetenzclustern
09.07.2020 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Satellitendaten zeigen Ausmaß der Dürresommer 2018 und 2019

10.07.2020 | Geowissenschaften

Grundlagen der Funktionen von Glutaredoxin-Proteinen im Eisenstoffwechsel und der Signalübertragung aufgeklärt

10.07.2020 | Medizin Gesundheit

Künstliche Intelligenz für die Notfallmedizin

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics