Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Kristallen regenerativ Wasserstoff erzeugen

23.08.2016

Mit Kristallen regenerativ Wasserstoff erzeugen - Preisgekrönte Idee für die Nutzung von Niedertemperaturabwärme

Auf der E-MRS-Tagung 2016 in Lille wurde Herr Rico Belitz vom Fraunhofer THM in Freiberg mit dem „Best Poster Award“ im Symposium W – „Materials and Systems for Microenergy Harvesting and Storage“ – ausgezeichnet.


EMRS-Preisträger Rico Belitz vom THM Freiberg bestückt den Versuchsaufbau mit einem Mikroreaktor. Mit dem Aufbau konnte die Wasserstofferzeugung an pyroelektrischen Kristallen nachgewiesen werden.

Fraunhofer THM

Der Fraunhofer-Wissenschaftler konnte zeigen, dass sich mithilfe von speziellen Kristallen Wasserstoff gewinnen lässt. Bei diesen so genannten pyroelektrischen Kristallen führen von außen aufgeprägte Temperaturänderungen zu einer elektrischen Aufladung der Kristalloberflächen.

Dabei kann die Aufnahme von Ladungsträgern aus der Umgebung zur Kompensation der Oberflächenladungen ausgenutzt werden, um Wasserstoff aus Wasser zu erzeugen. Nach diesem Prinzip könnte zum Beispiel bislang ungenutzte Niedertemperaturabwärme in wertvolle chemische Energie umgewandelt werden.

Der Effekt der Pyroelektrizität war bereits in der Antike bekannt, die breite technische Umsetzung erfolgte allerdings erst in der Mitte des 20. Jahrhunderts mit der Entwicklung von Infrarot-Sensoren. Die Sensoren nutzen dabei die elektrische Aufladung der Oberflächen pyroelektrischer Materialien bei Wärmeeinwirkung aus.

Auf diesem Detektor-Prinzip basiert heute der am häufigsten verwendete Typ von Bewegungsmeldern. Aber auch Geräte zur berührungslosen Temperaturmessung, so genannte Strahlungsthermometer oder Pyrometer, benutzen kleine, pyroelektrische Kristalle. Strahlungsthermometer lassen sich z.B. bei der Bauthermografie zum Aufspüren von Wärmebrücken einsetzen.

Die Arbeiten am Fraunhofer THM verfolgen den Ansatz, pyroelektrische Kristalle im direkten Kontakt mit Wasser einem Temperaturwechsel auszusetzen. Die damit einhergehende Änderung der Oberflächenpotentiale von, z.B., Bariumtitanatkristallen (BaTiO3) ermöglicht eine Reaktion der adsorbierten Wasserstoff- und Sauerstoff-Ionen oder –Moleküle zur Bildung von gasförmigem Wasserstoff und Sauerstoff.

Eine vorab durchgeführte theoretische Studie zu diesem Prozess zeigte, dass dafür eine sehr große wirksame Oberfläche der pyroelektrischen Kristalle nötig ist und die Temperaturwechsel mit hoher Frequenz erfolgen müssen, um in den Bereich messbarer Wasserstoffkonzentrationen zu gelangen. Für eine relevante Produktionsmenge aus Sicht einer technischen Nutzung, zum Beispiel zur Wandlung von Niedertemperaturabwärme in chemische Energie, wären diese Werte noch weitaus größer. Rico Belitz und seine Kolleginnen und Kollegen vom Fraunhofer THM und vom Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. in Meinsberg hatten hier vorläufig das Ziel, das Funktionsprinzip mit einem Labordemonstrator nachzuweisen.

„Als pyroelektrisches Material wurde Bariumtitanat (BaTiO3) ausgewählt. In einem Temperaturfenster von 0 bis 120 °C liegt BaTiO3 in der pyroelektrisch wirkenden, tetragonalen Kristallphase vor, was sehr gut zum Temperaturniveau industrieller Abwärme in Rückkühlanlagen oder dem Rücklauf von Heizungssystemen passt“, erläutert Rico Belitz. Für die Versuche wurden zunächst grobe Kristallstücke in Mörsern zu Pulver gemahlen, um die wirksame Oberfläche zu erhöhen, und dann in einen kleinen, quaderförmigen Behälter gefüllt.

Nach der Polarisation, also dem Ausrichten der einzelnen elektrischen Dipole in jedem Pulverteilchen in einem elektrischen Feld, wurde der Behälter mit Wasser gefüllt und einer periodischen Temperaturänderung zwischen 40 und 70 °C ausgesetzt. Dies erfolgte in einem von Rico Belitz speziell dafür konzipierten Mini-Teststand. Um eine Beeinträchtigung durch den in der Atmosphäre enthaltenen Wasserstoff sicher auszuschließen, wurde die Apparatur vor Versuchsbeginn mit Stickstoff gespült.

Mit Hilfe eines hochempfindlichen Wasserstoff-Gassensors konnte nach einigen Durchläufen schließlich pyroelektrisch erzeugter Wasserstoff nachgewiesen werden, wenn auch in sehr geringen Mengen. „Dieses Ergebnis zeigt die prinzipielle Möglichkeit auf, pyroelektrische Kristalle zur Erzeugung von Wasserstoff einzusetzen. Für eine spätere technische Umsetzung ist jedoch noch weitere intensive Forschungsarbeit, insbesondere auch unter Verwendung alternativer pyroelektrischer Materialien, erforderlich“, stellt Rico Belitz klar.

Auf der E-MRS-Frühjahrstagung (E-MRS: European Materials Research Society) Anfang Mai 2016 in Lille, an der mehr als 2500 Materialwissenschaftler aus der ganzen Welt teilnahmen, präsentierte Rico Belitz seinen Prinzipnachweis der Wasserstofferzeugung durch pyroelektrische Kristalle erstmals der Öffentlichkeit. Der wissenschaftlich-technische Posterbeitrag begeisterte die wissenschaftliche Community so sehr, dass er mit dem „Best Poster Award“ im „Symposium W – Materials and Systems for Microenergy Harvesting and Storage“ ausgezeichnet wurde.

Auch wenn es noch ein langer Weg vom Nachweis der prinzipiellen Machbarkeit bis zur tatsächlichen Anwendung ist, zeigt sich doch das hohe wissenschaftlich-technische Interesse an innovativen Methoden zur Energieumwandlung, die einen Beitrag zur Energiewende leisten können. Die hier prämierte Arbeit hat ihren Ursprung in einer Zusammenarbeit zwischen dem Fraunhofer THM und der Technischen Universität Bergakademie Freiberg im Rahmen der Nachwuchsforschergruppe „PyroConvert“, die aus Mitteln der Europäischen Union und des Freistaates Sachsen gefördert wurde.

Ansprechpartner

Dr. Jochen Friedrich
Fraunhofer IISB
Schottkystraße 10, 91058 Erlangen, Germany
Tel. +49-9131-761-270
Fax +49-9131-761-280
info@iisb.fraunhofer.de

Fraunhofer THM

Das Fraunhofer-Technologiezentrum Halbleitermaterialien THM Freiberg betreibt Forschung und Entwicklung auf dem Gebiet der Halbleitermaterialien für die Photovoltaik und die Mikroelektronik. Das THM ist eine gemeinsame Einrichtung des Fraunhofer-Instituts für Integrierte Systeme und Bauelementetechnologie IISB in Erlangen und des Fraunhofer-Instituts für Solare Energiesysteme ISE in Freiburg. Es besteht eine enge Kooperation mit der Technischen Universität Bergakademie Freiberg auf dem Gebiet der Halbleiterherstellung und –charakterisierung. Ein Hauptziel ist die Unterstützung der regionalen Halbleitermaterialindustrie durch den Transfer wissenschaftlicher Erkenntnisse in die industrielle Verwertung.

Fraunhofer IISB

Das 1985 gegründete Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB betreibt angewandte Forschung und Entwicklung auf den Gebieten der Mikro- und Nanoelektronik, Leistungselektronik und Mechatronik. Mit Technologie-, Geräte- und Materialentwicklungen für die Nanoelektronik sowie seinen Arbeiten zu leistungselektronischen Systemen für Energieeffizienz, Hybrid- und Elektroautomobile genießt das Institut internationale Aufmerksamkeit und Anerkennung. Rund 250 Mitarbeiterinnen und Mitarbeiter arbeiten in der Vertragsforschung für die Industrie und öffentliche Einrichtungen. Neben seinem Hauptsitz in Erlangen hat das IISB zwei weitere Standorte in Nürnberg und Freiberg. Das IISB kooperiert eng mit dem Lehrstuhl für Elektronische Bauelemente der Friedrich-Alexander-Universität Erlangen-Nürnberg.

Weitere Informationen:

http://www.thm.fraunhofer.de Homepage Fraunhofer THM
http://www.iisb.fraunhofer.de Homepage Fraunhofer IISB

Kommunikation | Fraunhofer-Gesellschaft

Weitere Berichte zu: BaTiO3 IISB Nanoelektronik Wasserstoff chemische Energie

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Gleichstrom für die Fabrik der Zukunft
06.12.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Bis zu 30 Prozent mehr Kapazität für Lithium-Ionen-Akkus
05.12.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das feine Gesicht der Antarktis

Eine neue Karte zeigt die unter dem Eis verborgenen Geländeformen so genau wie nie zuvor. Das erlaubt bessere Prognosen über die Zukunft der Gletscher und den Anstieg des Meeresspiegels

Wenn der Klimawandel die Gletscher der Antarktis immer rascher Richtung Meer fließen lässt, ist das keine gute Nachricht. Denn dadurch verlieren die gefrorenen...

Im Focus: Virenvermehrung in 3D

Vaccinia-Viren dienen als Impfstoff gegen menschliche Pockenerkrankungen und als Basis neuer Krebstherapien. Zwei Studien liefern jetzt faszinierende Einblicke in deren ungewöhnliche Vermehrungsstrategie auf atomarer Ebene.

Damit Viren sich vermehren können, benötigen sie in der Regel die Unterstützung der von ihnen befallenen Zellen. Nur in deren Zellkern finden sie die...

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Titin in Echtzeit verfolgen

13.12.2019 | Biowissenschaften Chemie

LogiMAT 2020: Automatisierungslösungen für die Logistik

13.12.2019 | Messenachrichten

Das feine Gesicht der Antarktis

13.12.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics